

CS 492 - Senior Design Project

SürDur

Spring 2025

Final Report

T2419

Bora Haliloğlu - 22101852

Burak Oruk - 22102443

Emir Tuğlu - 22003165

Mustafa Gökalp Gökdoğan - 22102936

Tevfik Emre Sungur - 22102377

Table of Contents
Table of Contents... 2
1. Introduction.. 3
2. Requirements Details.. 4

2.1. Functional Requirements.. 4
2.2. Nonfunctional Requirements...7

3. Final Architecture and Design Details... 9
3.1. Overview... 9
3.2. Subsystem Decomposition..10
3.3. Services...11
3.4. Hardware/Software Mapping...13
3.5. Persistent Data Management..14
3.6. Access Control and Security... 15

4. Development/Implementation Details.. 15
4.1. Presentation Layer Services... 16
4.2. Server Layer Services... 16
4.3. Data Access Layer Services... 18
4.4. Data Preprocessing...18
4.5. Recommendation Mechanism...21

5. Test Cases and Results... 22
5.1. Test Cases for Functional Requirements.. 22
5.2. Test Cases for Non-functional Requirements..41

6. Maintenance Plan and Details...50
6.1. Agile-Based Maintenance Approach...50
6.2. User Feedback Collection and Processing... 51
6.3. Version Control and Release Management...51
6.4. Monitoring Strategy... 51
6.5. Deployment and Update Strategy... 52
6.6. Backup and Disaster Recovery Plan...52
6.7. Third-Party Services Maintenance.. 52

7. Other Project Elements... 53
7.1. Consideration of Various Factors in Engineering Design.. 53
7.2. Ethics and Professional Responsibilities...57
7.3. Teamwork Details.. 58
7.4. New Knowledge Acquired and Applied... 70

8. Conclusion and Future Work.. 71
9. Glossary..72
10. References..73

2

1.​ Introduction

SürDur is a mobile application designed to enhance the road trip experience

by offering personalized stopovers along the route. After selecting a destination,

users can explore a variety of recommended points of interest (POIs) drawn from

various travel databases and blogs, providing a customized and enriching journey.

The app also integrates a social media feature that allows users to vote on routes,

follow other travelers, and share experiences. This community-driven aspect fosters

engagement and facilitates personalized recommendations based on user

interactions. SürDur has been developed as a cross-platform solution, supporting

both Android and iOS devices to ensure accessibility for a wide range of users.

In the remainder of this report, we begin by introducing the SürDur

application, outlining its main features and the core functionality it provides. We then

discuss the design goals that guided the development, as well as the system’s

architecture, providing insights into the layered structure and components. Following

this, we present the implementation details, including backend and frontend

development, and how the application was built to meet both functional and

non-functional requirements. Additionally, we cover the test cases we designed to

validate the application’s features and performance. We also examine the key

constraints and considerations, such as technical, economic, and social factors, that

shaped our decisions throughout the project. The report concludes with a detailed

look at teamwork, highlighting the contributions of each team member, and offering

reflections on the project's success and potential future improvements.

3

2.​ Requirements Details
2.1.​ Functional Requirements

This section describes the functional requirements that SürDur application

follows.

2.1.1.​ Sign Up & Login

Application does:

●​ Allow users to log in to the application using their account information.

●​ Allow users to register manually by providing account details.

●​ Allow users to add their personal information, such as name, age, and

preferences.

●​ Enable users to add place category preferences for road trips.​

2.1.2.​ Destination Selection

Application does:

●​ Display the user's current location on an interactive map.

●​ Allow users to move around the interactive map.

●​ Provide a feature to return to the user's current position on the map.

●​ Allow users to select a destination location for route planning.​

2.1.3.​ Point of Interest Suggestion

​ Application does:

●​ Display suggested points of interest (POIs) close to the given route.

●​ Allow users to zoom in or out to a particular region to get an adequate

number of suggestions in that area.

●​ Allow users to filter POIs by category to display only the POIs with the

selected categories.

●​ Display the preview information about the suggested places.

●​ Display detailed information about the selected place among the list of

suggested places.

4

●​ Allow users to add places to the route from the given suggestions.

●​ Allow users to remove places from the route among all of the previously

selected places.

●​ Reconstruct the route dynamically after each place addition and removal.

●​ Display the estimated time to reach the destination and the percentage of

how off the new route is from the original route.

●​ Allow users to finalize the route with selected places and save it on the

‘Planned’ routes of the user.​

2.1.4.​ Social Media

Application does:

●​ Display the shared route posts from other users on the application, with the

components:

○​ Starting and Destination Location

○​ Interactive Map Overview of The Route

○​ Title

○​ Description

○​ Author Username and Profile Picture

○​ Upvote and downvote counts

●​ Allow users to display detailed description of the selected route among

shared routes.

●​ Open the selected shared route by the user on the interactive map.

●​ Allow users to upvote or downvote the route post.

●​ Allow users to follow and unfollow other users

●​ Allow users to save the selected shared routes on the ‘Saved Routes’ folder

of the user.

●​ Send users notifications when there are upvotes or downvotes on their posts.

●​ Send users notifications when the users that are followed share their routes.​

​

2.1.5.​ Archives

Application does:

●​ Display all the personal routes of the user that are divided into four route

categories:

5

○​ In Draft: Routes that have not been totally completed on planning by

the user and require further route planning completion from the user.

○​ Planned: Routes that have been assigned as ‘completed planning’ by

the user and are ready to be traveled afterward.

○​ Completed: Routes that have been traveled and finished by the user

in real life.

●​ Allow users to filter personal routes based on their category, destination

location, and start location.

●​ Open the selected route from the archive on the interactive map for further

route editing or to start the road trip.

●​ Allow users to delete present routes from the user archive.

●​ Allow users to share their routes on the social media part of the application.

●​ Allow users to flag certain routes for further distinction from other routes.

2.1.6.​ Live Route Navigation

Application does:

●​ Allow users to start live navigation throughout the selected route.

●​ Perform real-time navigation throughout the road trip.

●​ Display real-time road directions (next maneuver’s turn and distance etc.) on

the screen.

●​ Display the total expected time remaining.

●​ Allow users to select emergency 'gas station' and 'electric vehicle charging

station' stops.

●​ Add the nearest and most convenient gas station or electric vehicle charging

station dynamically into the current route if chosen.

●​ Adjust live directions dynamically when the driver gets off the planned route.

●​ Allow users to exit the live navigation of the current route.

2.1.7.​ Profile Editing & Setting Adjustment

Application does:

6

●​ Allow users to edit their personal account information, such as username,

password, etc.

●​ Allow users to adjust application experience settings, such as theme, distance

and speed units, notification enablement, etc.

2.2.​ Nonfunctional Requirements
2.2.1.​ Usability

The usability of SürDur is evaluated based on both the

duration of app usage and the satisfaction level of users with the

personalized place suggestions. Therefore, SürDur provides a

user-friendly interface that includes simple, easy-to-use, yet

comprehensive components, which allow users to smoothly navigate

from the main page to the successful completion of a planned route.

This design aims to reduce confusion during usage and increase

overall user engagement. Additionally, the application ensures that the

number of place suggestions is balanced—neither overwhelming the

user with too many options nor offering too few, which could result in a

lack of interest. The current version of SürDur has been implemented

to work efficiently across different platforms, including Android and

iOS, ensuring accessibility for a broad user base.

2.2.2.​ Reliability

SürDur is designed to provide uninterrupted and stable

navigation throughout the trip. In case of network issues, the

application caches map data locally on the user’s device and

continues to operate without relying on a live internet connection. It is

also equipped to handle connection failures by informing the driver

clearly and safely, without causing distraction. These features ensure

that navigation continues smoothly even in areas with limited

connectivity. The application is capable of maintaining its functionality

during planned maintenance or unexpected server downtimes. In

addition to these features, the system regularly creates backups of the

7

database to prevent potential data loss due to crashes or critical

failures, which increases the overall robustness of the system

2.2.3.​ Performance

SürDur includes a data retrieval system that is optimized to

reduce latency and improve the responsiveness of route planning and

recommendation features. The application makes use of caching

strategies to store and quickly access frequently needed place

information, which is selected based on user location, preferences,

and relevance. These optimizations help ensure that users receive

fast and relevant suggestions without noticeable delay. Moreover, live

navigation is designed to run with minimal lag, providing users with a

smooth and real-time experience during their trips. This is particularly

important for safety, as even small delays in navigation feedback can

negatively impact the driving experience.

2.2.4.​ Supportability

SürDur is implemented with a flexible and scalable system

architecture that supports global compatibility and long-term

maintenance. The development environment allows the backend

structure to be updated through the addition or removal of

microservices without affecting the core functionality of the application.

To support smooth deployments and consistent environments,

virtualization tools are used across development and production

setups. This approach simplifies library updates and configuration

management. Additionally, the system is equipped with detailed

logging services that record system events, errors, and warnings.

These logs are valuable for identifying and resolving issues quickly,

improving system reliability and maintainability over time.

2.2.5.​ Scalability

SürDur is capable of handling large-scale usage scenarios that

involve high volumes of user requests and vast amounts of place data.

The backend is built with fast and asynchronous service logic to

8

support many users at the same time without major slowdowns. The

application uses data storage and caching strategies to optimize

performance under increasing load. Efficient use of database queries

and memory also helps ensure that large amounts of place data can

be managed and retrieved without causing delays or overloading the

system. As the number of users and data entries grows, SürDur can

adapt to demand by scaling its services without sacrificing

performance or stability.

3.​ Final Architecture and Design Details
3.1.​ Overview

The following component diagram shows the architecture in terms of

separate, self-contained components. When joined in a certain manner, they build

the whole software, and this diagram includes those connections and components. It

represents SürDur's layered architecture in a slightly more detailed way. SürDur’s

layered architecture is designed to promote modularity and maintainability of the

project. This ensures modern architectural principles like modularity and separation

of concerns. It contains four main layers: Presentation Layer, Business Logic Layer,

Data Access Layer, and Database Layer.

9

​

Figure 1: Component Diagram of SürDur Link SürDur Component Diagram.drawio.png

3.2.​ Subsystem Decomposition

The High Level System Architecture consists of several key subsystems,

each of which plays a specific role within the overall architecture. By maintaining a

layered structure, the system ensures modularity, maintainability, and separation of

concerns, ultimately making the architecture more scalable and efficient. The

subsystems are divided into four main layers:

10

https://drive.google.com/file/d/1OXgQgwIoIO2UV-VrrCCsZRm_lWPQ0euX/view?usp=sharing

3.2.1.​ Presentation Layer

Presentation Layer includes two different mobile UIs (Android and iOS). This

layer essentially enables user interactions.

3.2.2.​ Business Logic Layer

The Business Logic Layer includes the core and supporting components like

ML Service and Maps Service. Each supporting component is directly connected to

SürDur’s Core since the core acts as coordinator of other components. ML Service

returns POI recommendations. Maps Service is responsible for navigation and

pathfinding. Social Media is responsible for post and user interaction management.

Therefore, this layer’s main function is supporting the application's core business

functions. It also acts as an intermediary between the presentation and data access

layers.

3.2.3.​ Data Access Layer

The Data Access Layer manages data persistence between the Business

Layer and the Database Layer with Tortoise ORM Library. It simplifies database

operations.

3.2.4.​ Database Layer

The Database Layer uses a MySQL database which includes all the data

about the users, places, posts, and route logs. It manages the data storage and

retrieval. It provides this information through Tortoise ORM in the Data Access Layer.

3.3.​ Services

In the backend architecture of SürDur, the Business Logic Layer was

designed as a modular, component-based structure that effectively decoupled the

major functional domains of the system. This organization enhanced maintainability,

scalability, and fault isolation throughout development and deployment. The core

components of the Business Logic Layer are the SürDur Core, the ML Service, the

Maps Service, and the Social Media Service, each of which was developed as an

independent and cohesive module.

11

3.3.1.​ SürDur Core

The SürDur Core component served as the central orchestrator within the

Business Logic Layer. It operated as the primary interface between the client-side

Presentation Layer and the specialized backend services. SürDur Core managed

authentication, input validation, routing, and response composition, ensuring that

every client request was processed securely, efficiently, and consistently. It directed

route planning requests to the Maps Service, personalized recommendation queries

to the ML Service, and social interaction activities to the Social Media Service. The

Core service also handled system-level responsibilities such as centralized error

management, structured event logging for monitoring, and the enforcement of

security and rate-limiting policies. By consolidating these critical control operations,

SürDur Core ensured smooth cross-service workflows and upheld the system’s high

standards for reliability, responsiveness, and user experience.

3.3.2.​ ML / Recommendation Service

The ML Service was responsible for delivering SürDur’s personalized

point-of-interest (POI) recommendation functionality. It processed user-specific

preference vectors that are derived from past interactions and choices and compared

them against the embeddings of available POIs using a cosine similarity-based

ranking algorithm. The service generated a ranked list of stopovers tailored to the

user’s preferences, route geometry, and context. To enhance recommendation

diversity and avoid overly narrow suggestions, the ML Service applied controlled

exploration strategies such as epsilon-greedy selection. The ML Service was a key

enabler of SürDur’s differentiation from traditional navigation platforms, providing

intelligent, user-adaptive suggestions that transformed the travel experience into a

more personal and engaging journey.

3.3.3.​ Maps Service

The Maps Service managed all geospatial functionalities within SürDur,

including initial route generation, geocoding, and reverse geocoding. It integrated

external providers such as OpenRouteService to calculate optimal routes. The

service supported dynamic route adjustments by recalculating optimal paths

whenever users added or removed stopovers during their trip. It also provided

enriched navigation details, such as maneuver-by-maneuver instructions, estimated

12

times of arrival, and alternative route suggestions. By combining external data

sources with local resilience mechanisms, the Maps Service significantly enhanced

the reliability, flexibility, and user satisfaction of the SürDur application, ensuring

consistent navigation quality across varying conditions and operational scenarios.

3.3.4.​ Social Media

The Social Media Service enabled all social interaction features within

SürDur. It allowed users to create and publish route posts, upvote or downvote

shared routes, follow or unfollow other travelers, and save interesting routes to

personal collections. The service was designed to maintain strict separation between

private and public user data, ensuring data integrity and privacy compliance. It

utilized event sourcing to track all social interactions in an auditable and consistent

manner, while its read models, optimized for performance, enabled rapid retrieval of

feeds and posts. The Social Media Service successfully promoted community

engagement, enriching the travel experience by fostering interaction, discovery, and

knowledge-sharing among SürDur users.

3.4.​ Hardware/Software Mapping

SürDur does not require any additional software mapping other than the

device’s GPS functionality and internet connectivity. The application is designed to

operate without excessive computational requirements on personal devices. Users'

personal devices are primarily used to store locally cached route information and

user-preferred points of interest (POIs), ensuring that storage requirements remain

minimal.

SürDur is developed for both Android and iOS platforms. Any mobile device

that meets the requirements of an active GPS module and internet connection is

suitable for running the application.

13

Figure 2: Hardware/Software Mapping

SürDur is developed using FastAPI for the backend. The frontend is built with

React Native to ensure cross-platform compatibility. Google Maps and Apple Maps

are used for map rendering and OpenRouteService API is used for route creation,

while AWS servers host the backend and database.

The system architecture, the client’s device (smartphone) runs the SürDur

application and communicates with the server. Upon receiving a request from the

client, the server retrieves relevant data, including personalized POI

recommendations, route data, and user preferences. The server processes this data

and returns a response to the presentation layer on the client device.

3.5.​ Persistent Data Management

Our project leverages AWS RDS with MySQL to store and manage data,

including over 70,000 places sourced from the FourSquare API. Given the scale and

diversity of this data, we implemented a strategy to optimize category management

for more efficient querying and analysis. Initially, the raw place data included a vast

number of categories, some of which were not directly related to our project’s

purposes.

To address this, we applied the k-means clustering algorithm to group similar

categories, reducing redundancy and organizing the data into more coherent

clusters. After this automated clustering step, we manually refined the results to

correct vague or ambiguous classifications, ensuring a higher level of precision. This

hybrid approach where combining machine learning with human judgment, helped us

build a more reliable and manageable category structure, enhancing the overall

accuracy and usability of the data for our application.

14

3.6.​ Access Control and Security

SürDur implements access control and security mechanisms to ensure the

safety and usability of user data. The application uses FastAPI’s integration with the

OAuth2 authorization protocol to apply access control. Whenever a user logs in, a

unique and distinctive access token is generated and sent to the user. This token is

stored in the users’ devices and appended to each subsequent request coming from

that user. This way, the server can identify from which user a request originates from.

Knowing the owner of a request, the business logic implemented in the server side

determines whether the requested activity can be performed by the request owner. In

this way, users can only access data and functionality they are entitled to.

SürDur also has security mechanisms that ensure security of the user data.

User passwords are encrypted using the bcrypt algorithm before being stored in the

database. This prevents exposure of sensitive password data even if a data breach

occurs. The application also utilizes the SQLAlchemy ORM library to query the

database. This ensures that user inputs are sanitized before being passed into an

SQL query, hence preventing SQL injection attacks. Moreover, in the client devices,

authentication tokens are stored in secure storage rather than local storage to

prevent XSS attacks.

SürDur also implements additional measures to protect the system against

brute force attacks and API abuse. Using rate limiting in the server to restricting the

number of requests a user can perform within a time interval. This way, SürDur

prevents attacks like user enumeration, credential guessing, and API abuse.

Moreover, the system has logging mechanisms to detect and respond to any kind of

security threat.

4.​ Development/Implementation Details

The Subsystem Services section details the functional components within each

subsystem of the SürDur application. These services define the core operations that enable

various features of the system, ensuring seamless interaction between users and the

application. The system is structured into three main layers: Presentation Layer, Server

Layer and Data Access Layer. Each layer is responsible for specific tasks.

15

4.1.​ Presentation Layer Services

This layer contains services related to the user interface and interactions. The

presentation layer of the SürDur mobile application is developed using React Native,

that supports both iOS and Android environments. For UI rendering and smooth

interaction with maps, the app integrates with built-in map display services of Apple

and Android platforms configured in the Expo framework and utilizes

OpenRouteService API for real-time route creation. Expo facilitates easier

deployment and testing during development.

●​ Interactive Map Display Service: Handles rendering, animations, and

displaying dynamic and interactive map elements for the mobile application

(iOS, Android).
●​ Route Generation Service: Manages all user interactions, such as selecting

a destination, filtering POIs, and adding places to routes.

●​ Live Navigation Display Service: Presents real-time route navigation and

step-by-step directions, using OpenRouteService and handles offline routing

by caching the route and directions.

●​ Social Media Display Service: Shows user-generated posts, upvotes,

downvotes, posted images in the social media section of the app.

●​ Profile & Settings Service: Allows users to edit their profiles and adjust

settings.​

4.2.​ Server Layer Services

This layer contains services responsible for processing and logic execution.

These services interact heavily with the main database, requiring the Data Access

Layer for most operations. The server layer of the SürDur application is developed

using Python and the FastAPI framework, taking advantage of its asynchronous

capabilities to ensure scalable and efficient request handling. For data validation and

serialization, the Pydantic library is used to define Data Transfer Objects (DTOs) and

enforce strict schema constraints, ensuring that the data exchanged between the

client and server remains consistent and type-safe. The backend services are

deployed on AWS infrastructure—specifically, EC2 service for hosting the FastAPI

server, RDS for managing the MySQL database, and S3 for storing media assets

such as profile images. These services are integrated within the server layer to

16

ensure reliable performance, high availability, and seamless data flow across the

application. There is a core decomposition of the server layer services below.

Figure 3: Decomposition of Server Layer Services

●​ User Authentication Service: Manages user login, registration, and session

handling. This service has to be configured before other services to execute,

meaning all the other server services are dependent on authentication service. This

service interacts with the User Data Access layer to handle safe and robust database

logic functions.​

●​ AI-Based Recommendation Service: Interacts with our custom database that holds

both the user preferences and all the place information across the Türkiye. Analyzes

user preferences and suggests personalized point of interests (POI) along the route

using destination information and word embedding-based cosine similarity approach

between place tags that has been gathered from the largest place databases (e.g.

FourSquare) and user tag weights. User preferences are updated after the route

completion.​

●​ User Service: Handles post-authentication user-related use-cases, such as profile

editing, personal information retrieval. This service interacts with the User Data

Access layer to handle safe and robust database logic functions.​

17

●​ Route Service: Handles route-related use cases other than route recommendation;

such as adding and removing places inside a completed route, deleting and editing

route information. This service interacts with the Route Data Access layer to handle

safe and robust database logic functions.​

●​ Post Service: Handles social media related user interactions, including posting,

upvoting, following users, and sharing routes. The posts are retrieved with batches to

secure robustness and performance. This service interacts with the Post Data

Access layer to handle safe and robust database logic functions.​

●​ Archive Service: Manages personal route and post archive for each individual user,

allowing personal archive organization, sharing completed routes as posts, and

handling saved routes from other user’s posts.​

4.3.​ Data Access Layer Services

This layer ensures that data is retrieved and stored efficiently between the

Business Logic Layer and the Database. The underlying database system is MySQL,

a widely-used, reliable relational database that stores core data such as user profiles,

route archives and point-of-interest (POI) metadata.

●​ ORM Data Retrieval Service: Uses SQLAlchemy ORM to fetch and update

database entries efficiently.

●​ User Data Management Service: Fetches and updates user information,

such as travel history (archives), personal preferences, and saved routes.

●​ POI Data Fetching Service: Retrieves place details, categories, and

popularity rankings from the database layer filled with data from external

sources (e.g. FourSquare).​

4.4.​ Data Preprocessing

The data needed for SürDur to work with mostly consists of geolocations of

the places (i.e. restaurants, historical sites). However, for the recommendation

system to work, categories of those places should be present as well. Therefore,

category metadata was requested alongside with fundamental details of places while

fetching data from external sources (e.g. Foursquare). The data across Turkey

18

having 581 distinct categories, the question of “can this many categories be

personalized accurately and precisely” has arised.

As a means of reducing the redundancy in the data, k means clustering was

performed on the category data. The resulting clusters (not all of them, this will be

explained later) were mapped as one category (i.e. “Adana Kebab” and “Shish

Kebab” can both be treated as “Turkish Kebab”) since they are closely related in their

meanings. Even though some precision within the data is lost, the reduction in

number of categories helps the recommendation system to not overfit the data and

give more relevant suggestions.

While performing the k means clustering, in order to reduce ineffective

clusters, frequent phrase words such as “shop”, “store”, “place” were removed before

clustering. The effect of removing such stop words can be seen in the following

example:

●​ Baby Store

●​ Gun Store

●​ Cheese Store

In this set of examples, keeping the word “store” adds a bias to the word they

are paired with for a phrase embedding is calculated as the average of separate

words of it, resulting in phrases treated as close during k means clustering even if

they are only related in being a store and should not be grouped together. When the

word “store” is removed for calculation, Gun Store is grouped with Gun Range as it

should happen. After contextual stop words were removed, k means clustering was

performed with various k values. Then the clustering that gave the most relevant

groupings was chosen with human judgement.

In order to reduce the negative effects of the clustering approach, some

clusters were manually disbanded, or divided into smaller clusters to regain some of

the lost precision. As an example, as the result of the machine clustering all

instances of Turkish food is clustered under a group. However, for an app that has

Türkiye as its target market, treating all Turkish food as one would not yield a fruitful

personalization since it will not have the ability to differentiate any of the wildly

popular dishes. At this stage, two things should be noted: One is that the app is

produced for a Turkish audience, hence it is logical to tailor the data which app will

operate on according to the audience. Second is that this process of arranging

19

clusters manually was conducted by human judgement and is prone to error. To

reduce the human bias as much as possible, after the task was done by the

responsible body, there was a review session held with all the members of the group

in order to discuss and double-check the decisions that were made.

After clustering is done, in order to add a layered structure to the data, and

provide a medium for the recommendation system to do exploration (details

explained in section 4.5), a second round of clustering was operated upon the

clustered data. Later the clusters arisen from the second clustering were grouped

together meaningfully to construct a third layer of categories. Figure 4 represents the

layers of categories to provide a more clearer understanding. It should be noted that

Layer 0 is discarded in the process of writing the fetched data to the projects

database, and that the app only operates on Layer 1 and above.

Figure 4: Representation of Categories’ Layered Structure

20

4.5.​ Recommendation Mechanism

1. Configuration & JSON Logging​
 ​ Each user's level-1 weights and complete embedding are written as JSON

lines by a dedicated logger, which flushes instantly. Every run logs both raw and

"delta" records, calculates L₂ distances and cosine deltas against the most recent

values, and removes older entries to retain only the most recent.

2. Category Data & Hierarchy​
​ With pre-calculated high-dimensional embeddings, top-level categories reside

in a straightforward text list. A three-tiered hierarchy is defined by a JSON map (e.g.

Ramen → Japanese Cuisine → Food).

3. Initial User Profile Creation​
​ Sent for embedding, declared preferences (e.g., “Food”:3) are converted into

a weighted sentence and stored. Similarities to the user's embedding are scaled by

defined strengths, aggregated, normalized (max = 1.0), and persisted. Each category

begins with a default weight.

4. Embedding & Similarity Utilities​
 ​ A lazy initialization of an embedding client is made. With each request, a

saved embedding is retrieved (or a random fallback is used), dimensions are

checked, and similarity is calculated by a cosine-similarity helper.

5. Recommendation Pipeline​
​ It loads the embedding client and category data at startup, retrieves the user's

embedding and weights for each request, logs any modifications, and then ranks the

top K categories based on embedding similarity.

●​ Ranks top K categories by embedding similarity.

●​ Propagates 60% of each level-1 weight to level 2 and 30% to level 3.

●​ Adds ε-greedy exploration from level 2/3.

●​ Computes the route’s length and selects 10–25 slots based on distance tiers.

●​ Filters places via a lat/lon bounding box, indexes them with a k–d tree,

ensures each category appears once, then fills remaining slots by

rating-and-detour buckets (≈70% high, 30% medium, rest low).

●​ Returns a list of place records (ID, name, category, coords, rating, image).

21

6. Continuous Profile Updates​
​ When users click or select, the corresponding embeddings (weighted

modestly) are added to their stored embedding and level-1 weights are reinforced

and saved.

7. Core Algorithms & Design Principles​
 ​ Uses cosine similarity for weighting and ranking; ε-greedy for exploration;

hierarchical propagation to generalize interests; Haversine + k–d tree for efficient

spatial filtering; rating-based diversification; and a modular pipeline for scalability.

5.​ Test Cases and Results
5.1.​ Test Cases for Functional Requirements

22

Test ID 1.1 Category System Test Severity Major

Objective Verify that an embedding vector is correctly generated for each category
using OpenAI’s text-embedding-ada-002 model.

Steps 1.​ Check if each category is generated successfully.
2.​ Check whether the semantically similar categories also have close

vector embeddings.

Expected The vector correctly symbolizes each category, even if the category
contains Turkish words.

Date-Result 24.04.2025 - Pass

Test ID 1.2 Category Security Severity Major

23

Objective Verify that the Recommendation Engine is not prone to attacks such as
DDoS

Steps 1.​ Check if the server is usable under a heavy load of requests.
2.​ Check if one user is able to damage the system by sending multiple

queries.

Expected The server will recognize that the receiving queries are overwhelming the
server and initiate a control mechanism.

Date-Result N/A

Test ID 1.3 Category System Test Severity Critical

Objective When a user selects multiple categories, verify that their profile vector is
correctly computed using the chosen aggregation method

Steps 1.​ Check if the backend can handle multiple categories in the
recommendation system.

2.​ Check if the UX is smooth when multiple categories are selected.

24

Expected The recommendation profile should be updated with respect to all the
selected categories.

Date-Result 24.04.2025 - Pass

Test ID 1.4 Category Functional
Test

Severity Critical

Objective Given the same set of selected categories, ensure that the generated
profile vector is always the same (deterministic behavior)

Steps 1.​ Check if the system has deterministic behavior when categories are
selected for recommendation.

2.​ Check if the profile vector has the same value for the same
categories.

Expected The two profiles that were saved after the calculation should be the same.
In other words, there should be a deterministic behaviour.

Date-Result 24.04.2025 - Pass

25

Test ID 1.5 Category System Test Severity Major

Objective When exploration is enabled, ensure that the recommendations include
some diverse or less similar places, not just the top matches.

Steps 1.​ Check if when exploration is enabled in the recommendation
system the exploration results include diversity.

Expected The results should include diverse recommendations.

Date-Result 24.04.2025 - Pass

Test ID 1.6 Category Integration
Test

Severity Major

Objective Tests whether data is correctly passed between microservices and stored
in the database.

Steps 1.​ Check whether the data is lost between microservices.
2.​ Check whether the data is stored without any loss in the database.
3.​ Check if the microservices correctly modify the data
4.​ Check if the modified data is sent without any loss over the

network.

Expected There should not be any loss at any point in the transactions.

The modifications done to the data should be as expected.

26

Date-Result 24.04.2025 - Pass

Test ID 1.7 Category System Test Severity Major

Objective Verifies that a user receives a confirmation email after successful
registration.

Steps 1.​ Check if the user recieves a mail after successful registration.
2.​ Check if the mail received has the correct content and is sent to the

correct recipient.

Expected The mail should be sent to the correct recipient and the content should be
as expected meaning that there should not be any distortion in the
content.

Date-Result 24.04.2025 - Fail

Test ID 1.8 Category Security Test Severity Major

Objective Verify that users can successfully register with valid credentials.

Steps

1.​ Register with valid credentials and check if it succeeds.
2.​ Try registering with missing or incorrect fields and verify error

messages.
3.​ Attempt to register with an existing username or email.
4.​ Test with special characters and non-ASCII inputs to check system

stability.

27

Expected
The system should allow valid registrations while preventing invalid inputs

and duplicate accounts. It should handle all inputs without crashing
and enforce security measures effectively.

Date-Result 24.04.2025 - Pass

Test ID 1.9 Category Functionality Test Severity Minor

Objective Verify that users can filter POIs based on categories.

Steps

1.​ Navigate to the main screen for route recommendation.
2.​ Select a destination and view the suggested POIs.
3.​ Apply a filter by selecting a specific category (e.g., restaurants, gas

stations).
4.​ Verify that only POIs from the selected category are displayed.
5.​ Remove or change the filter and ensure that results update

accordingly.

Expected
The system should correctly display POIs based on the selected category,

updating the suggestions dynamically. Unfiltered results should
restore when no category is selected.

Date-Result 29.04.2025 - Pass

Test ID 1.10 Category Functionality Test Severity Major

Objective Verify that POI details (ratings, descriptions) are correctly displayed on the
recommendation stage.

28

Steps

1.​ Navigate to the main screen for route recommendation.
2.​ Select a destination and view the suggested POIs.
3.​ Click on a recommended POI to open its details.
4.​ Check if the POI details such as name, description, rating, and

category are displayed correctly.
5.​ Compare displayed details with the expected values from the

database or API.

Expected
The system should accurately display the correct POI name, description,

ratings, and other relevant details. Any missing or incorrect
information should not be shown.

Date-Result 26.04.2025 - Pass

Test ID 1.11 Category Functionality Test Severity Major

Objective
Verify that POI suggestions are displayed on the map correctly based on the

destination route.

Steps

1.​ Select a starting point and a destination on the map.
2.​ Allow the system to generate a route between the two points.
3.​ Check if suggested POIs appear along the route.
4.​ Click on a suggested POI and verify its location matches the

expected coordinates.
5.​ Compare displayed POIs with actual relevant locations from the

database or API.

Expected
POI suggestions should be accurately placed along the selected route on

the map. Locations should correspond to real-world data, and
misplaced or missing POIs should not occur.

Date-Result 26.04.2025 - Pass

29

Test ID 1.12 Category Functionality Test Severity Moderate

Objective Verify that users can create posts with their previously saved routes.

Steps

1.​ Navigate to the ‘Archive’ section.
2.​ Select a previously saved route from the personal archive.
3.​ Click on the "Create Post" button.
4.​ Enter a title, description, and optionally add images.
5.​ Publish the post and verify that it appears in the social page.

Expected
The system should allow users to create posts using their saved routes,

and the post should be visible in the social feed with the correct
details.

Date-Result 26.04.2025 - Pass

Test ID 1.13 Category Functionality Test Severity Minor

Objective Verify that users can follow/unfollow other users.

Steps

1.​ Navigate to the social page to display posts.
2.​ Click on a user's profile to open their details.
3.​ Click the "Follow" button and verify that the status changes to

"Following."
4.​ Refresh the page and ensure the following status persists.
5.​ Click "Unfollow" and confirm that the status updates correctly.

Expected Users should be able to follow and unfollow others seamlessly, with the

30

status updating correctly and persisting after refresh.

Date-Result 26.04.2025 - Pass

Test ID 1.14 Category Functionality Test Severity Moderate

Objective Verify that users can upvote/downvote and retract their votes on posts correctly.

Steps

1.​ Navigate to the social page and find a post.
2.​ Click the "Upvote" button and verify that the vote count increases.
3.​ Click the "Downvote" button and check if the vote count adjusts

accordingly.
4.​ Click the same vote button again to retract the choice and ensure

the count updates properly.
5.​ Refresh the page and confirm that the vote status remains

consistent.

Expected
Users should be able to upvote, downvote, and retract their choices

without errors. The vote count should update correctly and persist
after a refresh.

Date-Result 26.04.2025 - Pass

Test ID 1.15 Category System Test Severity Critical

Objective Users would select any place from the search engine.

31

Steps 1.​ Enter search.
2.​ Search for any place and select it as the destination.

Expected A route should be created with the correct locations and should perform
routing operations.

Date-Result 26.04.2025 - Pass

Test ID 1.16 Category System Test Severity Critical

Objective When selecting a destination from microservices, the unknown place should be
available within the application regarding the operations related to that
route.

Steps 1.​ Enter search.
2.​ Select detailed search.
3.​ Search and select a destination that is not in the SürDur DB.

Expected Routing operations should continue as usual.

Date-Result 27.04.2025 - Pass

Test ID 1.17 Category Functionality
Test

Severity Major

Objective When a place not from the SürDur database is selected, it should be held
effectively in the backend. When all the references to the temporary

32

destination are deleted, the object should be garbage collected.

Steps 1.​ Search and select a destination that is not in the SürDur DB.
2.​ Save the route.
3.​ Verify the destination is stored in the backend.
4.​ Delete all references to the temporary destination (e.g. the saved

route).

Expected The temporary place is no longer stored in the backend.

Date-Result 27.04.2025 - Pass

Test ID 1.18 Category Unit Test Severity Minor

Objective When the recommendation engine selects places from the database, if a place
belonging to several classes is selected, it should not be served several
times but once.

Steps 1.​ Enter search.
2.​ Select destination.
3.​ Wait until recommendations are provided.

Expected Recommendations are given as unique subsets of places.

Date-Result 27.04.2025 - Pass

Test ID 1.19 Category Unit Test Severity Minor

33

Objective Fetched places should be within a constant radius of the road.

Steps 1.​ Enter search.
2.​ Select destination.
3.​ Select radius r for the recommendations to be searched within.
4.​ Wait until recommendations are provided.

Expected Recommendations are within the r kilometers radius from the route.

Date-Result 27.04.2025 - Pass

Test ID 1.20 Category Regression
Test

Severity Minor

Objective Ensures that users can upload a profile picture, and existing functionality

remains unaffected.

34

Steps 1.​ Log in to the application.
2.​ Navigate to the profile settings page.
3.​ Click on the "Upload Profile Picture" button.
4.​ Select an image from the device.
5.​ Confirm and save changes.

Expected Profile picture is uploaded and displayed correctly without affecting other
functionalities.

Date-Result 27.04.2025 - Pass

Test ID 1.21 Category Integration
Test

Severity Major

Objective Ensures that the recommendation engine fetches relevant POIs based on

user preferences.

Steps 1.​ The user logs in and selects a destination.
2.​ The system retrieves POIs from various sources.
3.​ Apply user-specific filtering based on preferences.
4.​ Display recommended POIs along the route.

Expected The user sees relevant POIs based on previous selections and
interactions.

Date-Result 28.04.2025 - Pass

35

Test ID 1.22 Category Acceptance
Test

Severity Major

Objective Confirms that users can create, edit, and share posts successfully.

Steps 1.​ Login and navigate to the social feed.
2.​ Click on "Create Post" and add route details.
3.​ Attach images and a description.
4.​ Click "Share" and verify the post appears in the feed.
5.​ Edit the post and save changes.

Expected Users can create, modify, and share posts without errors.

Date-Result 28.04.2025 - Pass.

Test ID 1.23 Category Functional
Test

Severity Moderate

Objective Ensures that search queries return accurate and relevant results without

knowing the internal implementation.

Steps 1.​ Open the app and navigate to the search bar.
2.​ Type a location or POI category.
3.​ Press enter and observe results.
4.​ Verify that search results are relevant to the query.

Expected The system displays correct results matching the entered keywords.

36

Date-Result 28.04.2025 - Pass

Test ID 1.24 Category Security Test Severity Major

Objective Ensures that users cannot access or modify data they are not authorized.

Steps 1.​ Attempt to access another user's profile settings via URL
manipulation.

2.​ Try sending a request to modify someone else's data.
3.​ Analyze server response codes.
4.​ Ensure database restrictions prevent unauthorized access.

Expected Unauthorized attempts are blocked, and security logs record suspicious
activities.

Date-Result 28.04.2025 - Pass

Test ID 1.25 Category Functionality
Test

Severity Moderate

Objective Verify that users can add/remove POIs to the route in between the starting

and destination locations.

Steps 1.​ Select a destination by clicking a location on the map.
2.​ Click on the “Create Route” button.
3.​ Add two recommended POIs to the route by clicking the “+” icon

next to them..

37

4.​ Remove a POI from the route by clicking the “-” icon next to it..

Expected One POI remains in the route.

Date-Result 28.04.2025 - Pass

Test ID 1.26 Category Functionality
Test

Severity Moderate

Objective Verify that users can change the order of POIs in their routes.

Steps 1.​ Select a destination by clicking a location on the map.
2.​ Click on the “Create Route” button.
3.​ Add POI A to the route by clicking the “+” icon next to it.
4.​ Add POI B to the route by clicking the “+” icon next to it.
5.​ Drag POI B in front of POI A in the route overview bar.

Expected POI B precedes POI A in the route.

Date-Result 28.04.2025 - Pass

Test ID 1.27 Category Security Test Severity Major

Objective Verify that users cannot inject and execute malicious code as a text input

while creating posts.

38

Steps 1.​ Navigate to the “Archive” page.
2.​ Select a previously saved route from the archive.
3.​ Click on the "Create Post" button.
4.​ Put malicious code into the “description” section.
5.​ Click on the “Create” button.

Expected The inserted malicious code is not executed.

Date-Result 28.04.2025 - Pass

Test ID 1.28 Category UI Test Severity Major

Objective Verify that users can enter data only in the correct format to email, date,

and phone number fields in register and edit profile pages

Steps 1.​ Go to the “Sign Up” page.
2.​ Enter a non-email text to email field.
3.​ Enter an invalid date.
4.​ Enter an invalid phone number.
5.​ Click on the “Sign Up” button.

Expected For each field, an error message pops up after the user enters the invalid
input.

Date-Result 28.04.2025 - Pass

Test ID 1.29 Category System Test Severity Major

39

Objective Verify that API endpoints validate data before storing in the database

Steps 1.​ Send a request containing invalid sign up credentials to the
/register endpoint of the server.

Expected The server returns an error message indicating which field contains invalid
input.

Date-Result 28.04.2025 - Pass

Test ID 1.30 Category Functionality
Test

Severity Major

Objective Verify that users can select their current location as a starting point for a

route.

Steps 1.​ Select a destination by clicking a location on the map.
2.​ Click on the “Select starting point” button
3.​ Click on the “Use my current location” button.
4.​ Click on the “Create” button.

Expected The route containing the user location as the starting point is created.

Date-Result 28.04.2025 - Pass

40

Test ID 1.31 Category Functionality
Test

Severity Major

Objective Verify that users can edit their profile.

Steps 1.​ Log in to a user account.
2.​ Click on the profile picture icon on the top right corner.
3.​ Click on the edit icon.
4.​ Change data in each field.
5.​ Click on the “Edit” button.

Expected Profile of the user is updated with the entered information.

Date-Result 28.04.2025 - Pass

Test ID 1.32 Category UI Test Severity Major

Objective Recommendations are given as brief information cards at the bottom bar.

Steps 1.​ Select destionation and create a route.
2.​ Wait for the engine to give recommendations.

Expected A slide bar with selectable recommendations are displayed at the bottom
of the map area.

Date-Result 28.04.2025 - Pass

5.2.​ Test Cases for Non-functional Requirements

Test ID 2.1 Category System Test Severity Minor

Objective Verify that embeddings are stored efficiently (e.g., SSD storage is properly

used and memory limits are respected).

Steps 1.​ Check quantization to store the embeddings and save the memory
usage.

2.​ Check Huffman coding to store the embeddings and save the
memory usage.

3.​ Check HDF5 to store the embeddings and save the memory

41

Test ID 1.33 Category UI Test Severity Major

Objective Recommendation selection bar should have a detailed page when dragged

up.

Steps 1.​ Select a destination and create a route.
2.​ Wait for the engine to give recommendations.
3.​ Pull the recommendations tab up by holding and swiping.

Expected The screen shows the recommendations given by the engine in detailed
form.

Date-Result 28.04.2025 - Fail

usage.
4.​ Check which one is best.

Expected The result should be within the memory limits of the server.

Date-Result 30.04.2025 - Pass

Test ID 2.2 Category Usability Severity Minor

Objective Ensure that the POI recommendation page is not getting stuck when the
recommendation engine is running

Steps 1.​ Check if the application is still responsive when the backend is
processing.

2.​ Check if the UI is informative and provides a smooth UX
experience.

Expected The UI should be fully functional throughout the response waiting.

Date-Result 30.04.2025 - Pass

42

Test ID 2.3 Category Usability Severity Minor

Objective If for some reason the Backend API times out, the correct message should
be displayed

43

Steps 1.​ Check if the application can handle time-out error from the server.
2.​ Check if the application can handle 5xx errors.

Expected The UI does not get stuck when there is an error in the system either from
the frontend or the backend.

Date-Result 30.04.2025 - Pass

Test ID 2.4 Category Functionality
Test

Severity Critical

Objective When selecting places, the recommendations should not be far off from the
user's preferences.

Steps 1.​ Set user preferences.
2.​ Request place recommendations from the system.
3.​ Plot the distribution of the given recommendation tags.
4.​ Verify the distribution aligns with the user’s preferences.
5.​ Check that a k percentage of recommendations explore new but

relevant categories.

Expected Users receive recommendations that are related to their preferences.

Date-Result 30.04.2025 - Pass

Test ID 2.5 Category Resilience
Test

Severity Major

44

Objective When a fault in the backend occurs, the out-of-database places should not
cease to exist.

Steps 1.​ Add an out-of-database place to the system.
2.​ Simulate a backend fault (e.g., crash or service restart).
3.​ Restore the backend and query for the place.
4.​ Verify the out-of-database place still exists and is accessible.

Expected All place instances should remain intact.

Date-Result 30.04.2025 - Pass

Test ID 2.6 Category Performance
Testi
ng

Severity Major

Objective Measures how quickly search results are returned after a place search

query.

Steps 1.​ Execute a search request for a popular location.
2.​ Record the response time.
3.​ Repeat with different queries.
4.​ Measure average response time across multiple attempts.

Expected Search results should return within an acceptable threshold, < 2 seconds.

Date-Result 30.04.2025 - Pass

45

Test ID 2.7 Category Performance
Testi
ng

Severity Major

Objective Measure how quickly place recommendations are generated based on

personal category preferences.

Steps 1.​ Simulate personal category preferences for one test user.
2.​ Execute a place recommendation request based on a selected

route.
3.​ Record the response time for recommendations to appear.
4.​ Repeat the test with different test users with different preferences.
5.​ Measure and analyze the average response time across multiple

attempts.

Expected Search results should return within an acceptable threshold, < 2 seconds.

Date-Result 30.04.2025 - Pass

Test ID 2.8 Category Load Testing Severity Major

Objective Simulates 100 concurrent users making route searches.

Steps 1.​ Deploy a test scenario with 100 simulated users.
2.​ Monitor server performance metrics.
3.​ Check if any delays or crashes occur.
4.​ Evaluate system scalability.

Expected The system should handle the load without much performance
degradation.

46

Date-Result N/A

Test ID 2.9 Category Stress
Testi
ng

Severity Major

Objective Tests system stability under maximum load conditions.

Steps 1.​ Simulate extreme traffic with thousands of requests per second.
2.​ Observe system behavior and log response times.
3.​ Check for bottlenecks in backend processing.
4.​ Determine the breaking point of the system.

Expected The system should degrade gracefully, not crash, and maintain partial
functionality under high stress.

Date-Result To be filled after execution.

Test ID 2.10 Category
Security

Testi
ng

Severity Major

Objective Verify that sensitive user data, such as passwords, are
encrypted when stored in the database.

47

Steps

1.​ Register a new user with a password.
2.​ Access the database and retrieve stored user credentials.
3.​ Verify that the password is stored in a hashed format of bcrypt.
4.​ Attempt to decrypt or retrieve the original password from the

database.
5.​ Confirm that encryption is applied correctly and that plaintext

passwords are not stored.

Expected
Passwords should be securely hashed and stored using an

industry-standard encryption method. Plaintext passwords must
never be visible in the database.

Date-Result 30.04.2025 - Pass

Test ID 2.11 Category
Performance

Testi
ng

Severity Major

Objective Verify that caching mechanisms improve loading speed for frequently
accessed routes, such as archived routes and social posts.

Steps

1.​ Load a saved route from the archive and record the loading time.
2.​ Navigate to a social post containing a route and record the loading

time.
3.​ Repeat the actions multiple times to check if caching reduces

loading times.
4.​ Clear the cache and compare the loading times with cached

results.
5.​ Analyze the difference in response times before and after caching.

Expected Loading times should decrease for repeated actions due to caching,
improving overall system performance.

48

Date-Result 30.04.2025 - Fail

Test ID 2.12 Category Security Test Severity Major

Objective Ensure that the authentication token of inactive users will be deactivated

after 1 hour.

Steps 1.​ Log in to a user account.
2.​ Save the received authentication token.
3.​ Wait for 1 hour.
4.​ Send a POST request to /post endpoint with the saved token.

Expected Server returns an error message indicating the user is not authorized to
perform that action.

Date-Result 30.04.2025 - Pass

Test ID 2.13 Category Security Test Severity Major

Objective Ensure that a large number of requests coming from the same IP address

will be throttled down.

Steps 1.​ Log in to a user account.
2.​ Save the received authentication token.
3.​ Write a script that continuously sends GET requests to the

/recommend endpoint with the saved authentication token.

49

Expected After the limit is reached, the server returns an error message indicating
that the user exceeded the request limit.

Date-Result 30.04.2025 - Pass

Test ID 2.14 Category Performance
Test

Severity Major

Objective Ensure that the time required to start the application from scratch is within

a reasonable interval.

Steps 1.​ Clear the local cache of the test device.
2.​ Start the timer.
3.​ Start the “SürDur” application.
4.​ Stop the timer when the application is loaded and ready to use.

Expected The measured time is less than 2 seconds.

Date-Result 30.04.2025 - Pass

Test ID 2.15 Category Documentati
on
Test

Severity Moderate

6.​ Maintenance Plan and Details
6.1.​ Agile-Based Maintenance Approach

Just like the pre-launch maintenance, SürDur’s post-launch maintenance will

follow the Agile methodology, continuing the sprint-based work model used during

development. After release, the development team will organize two-week

maintenance sprints focusing on bug fixes, performance improvements, and small

feature updates. The backlog will be continuously updated based on system

monitoring outputs and user feedback, ensuring iterative enhancements without

requiring major overhauls.

Emergency issues such as server downtime or API failure will be handled

outside the regular sprint cycle as critical hotfix tasks, while planned improvements

and optimizations will be scheduled into upcoming sprints.

50

Objective Ensure that the system documentation is complete, accurate, and aligns

with the implemented features.

Steps 1.​ Open the latest version of the project documentation.
2.​ Compare system architecture details with the actual

implementation in the codebase.
3.​ Verify that API endpoints documented match the actual backend

API specifications.
4.​ Check if all features listed in the documentation exist and function

correctly in the application.
5.​ Ensure that user guides, installation instructions, and

troubleshooting steps are clear and up to date.
6.​ Identify any outdated, missing, or inconsistent information.

Expected Documentation should accurately reflect the current system architecture,
features, and API endpoints. User guides should provide clear and
correct instructions. No missing, outdated, or conflicting details
should be in the documentation.

Date-Result 30.04.2025 - Pass

6.2.​ User Feedback Collection and Processing

User feedback is gathered primarily from in-app feedback forms, App Store

and Google Play Store reviews, and social media engagement. Feedback is regularly

categorized into usability issues, feature requests, and bug reports, and logged into

the team's issue tracker on “Github Projects” that we are already managing the issue

organization.

Prioritization of user-reported issues are considered issue topic, frequency

and user impact. Critical feedback affecting navigation accuracy or application

stability were immediately assigned to the active sprint, while less urgent requests

are scheduled for later iterations.

6.3.​ Version Control and Release Management

SürDur utilizes the Git and GitHub portal for version control, following a

structured Git flow strategy. Development work occurs on side feature branches,

which are merged into a staging branch for integration testing before final releases

are merged into the main branch.

GitHub Actions have been integrated into the private Backend repository to

automate deployment pipelines to enhance release efficiency and security. Hotfixes

are branched directly from the production branch to allow rapid deployment without

disrupting ongoing development. For future enhancements, each production release

follows semantic versioning, like ‘Major’, ‘Minor’ and ‘Patch’.

6.4.​ Monitoring Strategy

Backend server health, API response times, database performance, and

application crash reports are monitored using AWS CloudWatch and in the future,

mobile crash reporting services such as Firebase Crashlytics.

In addition to real-time alerts for major problems, weekly system performance

summaries are reviewed to detect trends such as memory leaks, slow queries, or

increased API call failures. Monitoring results are feeded directly into maintenance

sprints to ensure early mitigation of potential issues.

51

6.5.​ Deployment and Update Strategy

Application updates are deployed to Google Play Store and App Store

through standard release pipelines, with submission following respective platform

guidelines. Minor updates are planned to occur monthly, while major updates

introducing new features or design changes occur quarterly.

Each release is accompanied by detailed changelogs and version numbers to

maintain transparency. Pre-deployment testing on staging environments ensures

compatibility across Android, iOS, and CarPlay devices, safeguarding user

experience during updates.

6.6.​ Backup and Disaster Recovery Plan

The backend service maintains daily automated backups of both application

data and the main place database. Backup snapshots are retained for a minimum of

30 days to allow quick recovery from accidental deletions or server failures.

In case of catastrophic system failure, the team restores services by spinning

up redundant AWS instances and restoring the latest database snapshot. A

documented disaster recovery playbook guides the recovery process, minimizing

downtime and user impact.

6.7.​ Third-Party Services Maintenance

Since SürDur relies heavily on third-party APIs such as OpenRouteService for

route formation, route editing and fetching relevant route information. Regular audits

are conducted to check API endpoint change notices and service reliability. Even

though OpenRouteService is an open-source service, possible pricing model

changes are regularly audited as well.

If an external service shows signs of instability or change, alternative services

will be researched, tested, and integrated where necessary. Dependency libraries

and SDKs related to these APIs will be updated quarterly to ensure compatibility and

security compliance.

52

7.​ Other Project Elements
7.1.​ Consideration of Various Factors in Engineering

Design
7.1.1.​ Constraints

This section discusses the SürDur project's constraints in detail on aspects of

development, economic, technological, social, safety, and sustainability. Also, the

effects of global, cultural, social, environmental and economic factors on the app is

given in the following table:

 Effect Level Effect

Global 9 ●​ Take different roads, places into consideration.
●​ Limitations of sources, passes from one

country to another may affect the whole
design.

Cultural 9 ●​ Cultural preferences should be taken into
consideration in place recommendation.

●​ Local cultural point of interests should be
taken into consideration.

Social 9 ●​ Social post interactions between users should
be considered on personal preference
loggings.

●​ Follower-following system should be
considered on social content display.

Environmental 5 ●​ Less fuel consumption should be taken into
consideration in route generation.

Economic 7 ●​ Budget availability by the user should be taken
into consideration in place suggestions.

●​ Server maintenance fees should be evaluated
to decide how large amount of place data the
application can hold.

 Table 2: Factors that can affect analysis and design

53

7.1.1.1.​ Development Constraints
●​ The project app is available for both iOS and Android.

●​ The mobile side of the project has been developed using React Native

as it’s compatible with both IOS and Android.

●​ The application has been developed with Python and FastAPI for the

back end and React-Native for the front end.

●​ In categorizing POIs, NLP methodologies and tools have been used to

help mapping many categories into predetermined categories.

●​ Git and Github have been used as our version control system.

●​ MySQL have been used to store and access database components

related to both the application engine and the user data.

●​ The backend services and the database are kept on AWS servers.

●​ Github Projects have been used to keep track of the development

process.

7.1.1.2.​ Economic Constraints
●​ The database is kept on AWS servers. Annual payment for reserving a

micro-sized server space (1 GB of data space) from Stockholm

servers requires $94 [1].

●​ Publishing the app on mobile platforms has two economic constraints.

One is the $25 one-time registration fee on the Google Play Store

(Android), and the other is the annual $99 fee on the App Store (IOS)

[2].

●​ Frameworks and libraries that are used to implement the project such

as FastAPI, React Native, and Expo, are free to use.

7.1.1.3.​ Technological Constraints
●​ The application needs an internet connection for all the functionalities,

such as route creation, navigation, social functions, and profile

operations.

●​ The application has to access the user’s location on route creation,

and navigation functions.

7.1.1.4.​ Social Constraints
●​ The application allows the sharing of previously followed routes.

●​ The public route posts include a title and a header which allows a

detailed explanation of the route. However, there is no further

text-based communication allowed on those posts.

54

●​ The posts have a voting system that shows the public appreciation of

users’ posts.

7.1.1.5.​ Safety Constraints
●​ Mobile app decisions are made to minimize user interaction during a

car ride.

●​ The users are asked to make choices before starting the ride.

●​ The live navigation service of SürDur is designed primarily around

driver safety. Therefore, the effect level of safety is 10 out of 10.

7.1.1.6.​ Sustainability Constraints
●​ Server and publishing services need to be paid annually.

●​ An increase in the number of users may result in database

enlargement, which may result in higher server space costs.

7.1.2.​ Standards
7.1.2.1.​ IEEE 1471

Purpose:

IEEE 1471, a software-intensive system architecture documentation standard,

is ISO/IEC/IEEE 42010. It outlines developing an architecture description that offers

a shared comprehension of the system's structure, functionality, and essential

characteristics [8]. We can more easily comprehend system components and their

relationships thanks to IEEE 1471's assistance in clarifying the architecture. This

entails outlining the architecture's background, perspectives, interested parties, and

the reasoning behind essential choices [3].

Key Elements:

We document architectural choices in development; this outlines essential

decisions made during the design process, supporting information, and other factors.

Also, documenting architectural views in the project enables us to represent the

project's physical, process, development, and logical aspects.

7.1.2.2.​ UML 2.5.1

Purpose

A widely used modeling language for describing, building, visualizing, and

recording the structure and behavior of software systems is UML 2.5.1 [9]. It provides

55

a consistent method for drawing diagrams that explain various system components.

We can understandably display the system's structural and functional elements using

UML. This standard facilitates the creation of models for different views (such as

class, sequence, and activity diagrams), which helps with system design and

communication [4].

Key Aspects

Class, Component, and Deployment aspects define the system's static

structure. Use Case, Sequence, and Activity represent dynamic aspects of the

system, including interactions and workflows.

7.1.2.3.​ IEEE 830

Purpose

Writing Software Requirements Specifications (SRS) is standardized by IEEE

830. It establishes a thorough framework for recording functional and non-functional

requirements, guaranteeing accuracy, consistency, and comprehensiveness [10].

IEEE 830 offers a systematic style for specs reports that assists teams in organizing

requirements for easy understanding and verification by stakeholders, developers,

and testers. Project objectives, scope, requirements, assumptions, and restrictions

are all covered in this standard [5].

Key Aspects

This standard addresses the project's background, goal, and extent.

Additionally, it gives a summary of the operating environment, user attributes, and

product capabilities.

7.1.2.4.​ ISO 31000

Purpose

One standard that offers recommendations for efficient risk management is

ISO 31000. It aids businesses in recognizing, evaluating, and reducing risks, which

enhances decision-making and reduces uncertainty [11]. This standard exemplifies

proactive risk management by addressing potential project risks (technical,

operational, and financial) and mitigation techniques. Risk assessment frameworks,

prioritization, and controls are a few examples [6].

56

Key Aspects

Identifying potential risks that have an impact on the project. Assessing the

impact and probability of hazards that have been discovered. establishing measures

to reduce or eliminate risks. We can identify possible problems and dangers by

implementing risk management.

7.1.2.5.​ IEEE Citation Style

Purpose

IEEE Citation Style is a widely standardized approach for citing sources from

engineering, information technology, and allied fields. It increases the traceability and

dependability of the information by ensuring that sources are consistently mentioned.

IEEE Citation Style provides a uniform method of referring to external sources

(including research papers, technical publications, and standards) that ensures

accuracy and lucidity. When citations are appropriately formatted, readers may locate

sources for further context and proof [7].

Key Aspects

References match the list of references and are numbered in brackets (e.g.,

[1], [2])[12]. provides comprehensive information for every source and arranges

citations in numerical order.

7.2.​ Ethics and Professional Responsibilities
7.2.1.​ Professional Responsibilities
●​ To ensure transparency and inclusivity, end users were kept informed

throughout the project’s lifecycle. This was achieved through surveys and

notifications regarding any design changes or finalizations. Their valuable

feedback was actively incorporated into the development process.

●​ A demo version of the application is presented to end users to collect their

opinions and tailor the app to align with market expectations.

●​ The construction of the database prioritized equal representation across all

cities and regions of Turkey. However, due to the natural non-uniform

distribution of human-made stops such as restaurants, the density of

solutions may vary depending on the region.

57

7.2.2.​ Ethical Responsibilities
●​ User geolocation data is strictly used for generating routes and navigation

purposes. This data is neither stored nor shared under any circumstances.

●​ Sensitive personal information, such as recommendation details and past trip

data, remains confidential and inaccessible to third parties.

●​ Publicly visible information, including name, surname, profile photo, and

shared routes, can only be displayed within the app interface. Outside of the

app, this information is safeguarded to ensure user privacy.​

7.3.​ Teamwork Details
7.3.1.​ Contributing and Functioning Effectively on the Team

7.3.1.1.​ Bora Haliloğlu
●​ Recommendation Service Design and Implementation

●​ Created Frontend components

7.3.1.2.​ Burak Oruk
●​ Helped to design the flow and handling of data to be used in the

recommendation service.

●​ Evaluated and processed the data to be inserted into database by the

following methods:

○​ Using K-Means algorithm, grouped similar place categories.

○​ Unbundled some of the clusters and made some hand-picking

to increase precision of the category groupings to be used in

the recommendation service.

●​ Helped implement some minor backend services.

7.3.1.3.​ Emir Tuğlu
●​ Deployed the backend services to the cloud using AWS infrastructure,

including EC2, RDS, and S3.

●​ Implemented various backend services and integrated them with the

rest of the system.

●​ Contributed to the development of several frontend pages and

components, and integrated them with the backend APIs.

7.3.1.4.​ Mustafa Gökalp Gökdoğan
●​ Implemented route related backend services and DAOs.

●​ Created the frontend structure and implemented many of the pages.

●​ Wrote the API scripts to fetch our places. Also, visualized these data.

58

7.3.1.5.​ Tevfik Emre Sungur
●​ Constructed the Data Access Layer structure on the backend

services, mostly on social page posts, and its implicit relationships

(e.g. upvoting / downvoting).

●​ Formed the MySQL database table structure and relationships.

●​ Integrated front and back social page services together, executed their

relative unit tests.

7.3.2.​ Helping to Create a Collaborative and Inclusive

Environment

To create a friendly and collaborative environment, we have organized

small groups to work on certain tasks, called work packages. Because team

members are already familiar with one another's abilities from previous

interactions, tasks are assigned based on individual capabilities. This strategy

guarantees that each person makes an equitable and significant contribution

to the project.

To ensure that no one feels left behind, team members can also ask

any work package assignee for help if they run into problems. By successfully

putting this structure into practice, we hope to create a helpful, collaborative

environment where everyone feels involved and included.

7.3.3.​ Taking a Lead Role and Sharing Leadership on the

Team

“Projects benefit greatly from having a leader because there is just

one person for the team to look up to, which makes progress easier and

faster. We separated our tasks into work packages and designated one

person as the leader of each package so that no one person would be

overburdened with the leadership responsibilities. Below is comprehensive

information on the work packages.

WP# Work package title Leader

59

WP1 Project Specification Document Gökalp Gökdoğan

WP2 Analysis and Requirement Report Tevfik Emre Sungur

WP3 Frontend Development Gökalp Gökdoğan

WP4 Backend Development Burak Oruk

WP5 Setting up the Database Tevfik Emre Sungur

WP6 Recommendation System
Development

Emir Tuğlu

WP7 Demo Bora Haliloğlu

WP8 Detailed Design Report Emir Tuğlu

WP9 Design Project Final Report Bora Haliloğlu

WP10 App Launch Burak Oruk

WP11 Final Demo Gökalp Gökdoğan

WP1: Project Specification Document

Start Date: 12 November 2024 End Date: 22 November 2024

60

Leader Gökalp Gökdoğan Members Involved All Members

Objectives: Prepare and deliver the Project Specification Document.

Tasks:

Task 1.1 Writing an Introduction: Describe the project in detail. Describe the
type of innovation that is being sought. Identify the limitations and
ethical and professional concerns.

Task 1.2 Writing Requirements: Describe the functional and non-functional
requirements in your writing.

Task 1.3 Writing Ongoing Discussions: Provide information on any
ambiguities in the project's specifics and outline potential future
directions.

Task 1.4 Writing References: Use the proper citation formats and include
references for all sources used in the report.

Deliverables:

D1.1: Project Specification Document

WP2: Analysis and Requirement Report

Start Date: 3 December 2024 End Date: 16 December 2024

Leader Tevfik Emre Sungur Members Involved All Members

Objectives: Prepare and deliver the Analysis and Requirement Report.

Tasks:

61

Task 2.1 Scenarios

Task 2.2 Creation of Use-Case Diagram

Task 2.3 Creation of Object and Class Model

Task 2.4 Creation of Dynamic Models: Create Activity, Sequence, and State
Diagrams.

Task 2.5 Creation of UI Designs

Task 2.6 Other Analysis Elements: Identify the options and hazards, and
describe the elements that influenced the design. Additionally, describe
the professional and ethical obligations. Provide a thorough project
strategy as well as a road map for gaining the technical know-how
required for the future.

Task 2.7 References: Use the proper citation formats and include references
for all sources used in the report.

Deliverables:

D2.1: Analysis and Requirement Report

WP3. Frontend Development

Start Date: 29 November 2024 End Date: May 2025

Leader Gökalp Gökdoğan Members Involved Bora Haliloğlu

Gökalp Gökdoğan

Emir Tuğlu

62

Objectives: Implementation of the front-end of the application according to the
UI Designs created for the Analysis Report.

Tasks:

Task 3.1 Implementation of Log-in & Sign-up pages

Task 3.2 Implementation of the Onboarding Page

Task 3.3 Implementation of the Main Page

Task 3.4 Implementation of Suggestion Page

Task 3.5 Implementation of the Navigation Page

Task 3.6 Implementation of the Search Page

Task 3.7 Connect front-end to back-end

Task 3.8 Optimizing performance of application

Deliverables:

D3.1: The Frontend of the app.

WP4: Backend Development

Start Date:16 November 2024 End Date: May 2025

Leader Burak Oruk Members Involved Tevfik Emre Sungur

Burak Oruk

Emir Tuğlu

Gökalp Gökdoğan

Objectives:Implementation of the back-end of the application according to the

63

design proposed in the Analysis Document.

Tasks:

Task 2.1: Initializing FastAPI project with correct dependencies

Task 2.2: Implementation of basic classes according to class diagram

Task 2.3: Implementing service layer

Task 2.4: Connecting the external services to service classes

Task 2.5: Testing controller endpoints via postman

Task 2.6: Connecting the back-end with front-end

Task 2.7: Deployment to AWS

Deliverables:

D2.1: The back-end application

WP5: Setting up the Database

Start Date:16 November 2024 End Date: February 2025

Leader Tevfik Emre
Sungur

Members Involved Tevfik Emre Sungur

Objectives:Designing and creating a database that can store high volume of
location data and allows low latency data retrieval.

64

Tasks:

Task 5.1: Design the database schema

Task 5.2: Create tables according to the design

Task 5.3: Collect and standardize data from different APIs and blogs:
Write scripts to collect data from the POI APIs and blogs. Then,
standardize this data to the same format and eliminate duplicate data
before storing in the database.

Task 5.4: Populate tables with the retrieved data: Save collected and
standardized data into the database.

Deliverables:

D5.1: The database that contains POI information.

WP6: Recommendation System Development

Start Date: January 2025 End Date: May 2025

Leader Emir Tuğlu Members Involved All Members

Objectives:Developing a recommendation system algorithm to provide users
personalized POI recommendations.

Tasks:

Task 6.1 Create Embeddings: Create the embeddings for the categories and
store them.

Task 6.2 Create Embedding Logic: Create the logic for the recommendation
for the embeddings.

Task 6.3 Create the Exploration System: Create the exploration logic.

65

Deliverables:

D6.1: The recommendation system that provides personalized
recommendations according to users’ preferences.

WP7: Demo

Start Date: 16 December 2024 End Date: 20 December 2024

Leader Bora Haliloğlu Members Involved All Members

Objectives: Prepare and deliver the Demo

Tasks:

Task 7.1 Prepare Slides: Prepare slides about the project, the problem that
project solves, market and competitor analysis, business model, etc.

Task 7.2 Prepare Demo: Prepare a demo to display implemented functionality
of the system.

Task 7.3 Present:

Deliverables:

D7.1: Demo

WP8: Detailed Design Report

Start Date: February 2025 End Date: March 2025

66

Leader Emir Tuğlu Members Involved All Members

Objectives: Prepare and deliver the Detailed Design Report

Tasks:

Task 8.1 Determine design goals: Usability, performance, reliability,
marketability, etc.

Task 8.2 Sketch the architecture of the system

Task 8.3 Explain subsystem services

Task 8.4 Define functional and non-functional test cases

Task 8.5 Discuss teamwork details

Deliverables:D8.1: Detailed Design Report

WP9: Design Project Final Report

Start Date: April 2025 End Date:May 2025

Leader Bora Haliloğlu Members Involved All Members

Objectives: Prepare and deliver the Design Project Final Report

Tasks:

Task 9.1 Write down requirements details:

Task 9.2 Sketch the final architecture

Task 9.3 Provide development and implementation details

67

Task 9.4 Give information about test cases and results

Task 9.5 Discuss maintenance plan

Task 9.6 Discuss other project elements: Constraints, standards, ethics and
professional responsibilities, teamwork details etc.

Deliverables:

D9.1: Design Project Final Report

WP10: App Launch

Start Date: May 2025 End Date: May 2025

Leader Burak Oruk Members Involved All Members

Objectives: Launch the app

Tasks:

Task 10.1 Test the app: Ensure each functionality is working as expected

Task 10.2 Launch the app on the App Store

Task 10.3 Launch the app on the Play Store

Deliverables:

D10.1: The app that can be downloaded by iOS and Android devices

68

WP11: Final Demo

Start Date: May 2025 End Date: May 2025

Leader Gökalp Gökdoğan Members Involved All Members

Objectives: Prepare and deliver the Final Demo

Tasks:

Task 11.1 Prepare Slides: Prepare slides about the project, the problem that
project solves, market and competitor analysis, business model, etc.

Task 11.2 Prepare Demo: Prepare a demo in which functionalities of the app
are displayed.

Task 11.3 Present

Deliverables:

D1.1: Final Demo

7.3.4.​ Meeting Objectives

At the beginning of the project, we set out to build a personalized travel

assistant application that not only provides standard navigation features but also

suggests meaningful stopovers based on user preferences. Our initial objectives

included designing a modular system architecture, implementing a functional

recommendation engine, enabling route creation and editing, and supporting social

interaction features like route sharing and following other users. From the early

planning stages, these objectives shaped our decisions on system design,

technology stack, and task distribution within the team. We made sure to document

our goals and reflect them in our GitHub Project board and internal documentation to

maintain clarity.

69

Throughout the semester, we consistently monitored our progress with

respect to the objectives. We held weekly meetings to review completed tasks,

prioritize upcoming items, and address any blockers that could prevent us from

staying on track. Whenever we needed to adjust the scope—for example, due to time

or infrastructure limitations—we made sure that the changes still aligned with our

core project goals. Our regular use of agile-style sprint planning and version tracking

helped us stay focused and organized during development. This approach also

allowed us to adapt to changes without losing sight of the overall direction of the

project.

In the end, we believe we met the main objectives we initially defined. The

core features of the application—including personalized point-of-interest

recommendations, route update options, profile editing, archives, and social

sharing—were all implemented and tested. The system runs reliably across Android

and iOS platforms, and the backend services are hosted and live on AWS servers.

Although we initially aimed to support CarPlay integration to extend usability for

in-vehicle navigation, this feature was not implemented due to time constraints.

Nonetheless, we successfully delivered a working product that fulfills the primary

expectations. Our team is satisfied with the outcomes, and we believe the project met

its purpose both technically and functionally.

7.4.​ New Knowledge Acquired and Applied

Throughout the development of the SürDur project, our team had the

opportunity to learn and apply a wide range of new technologies, methodologies, and

tools that we had limited or no experience with before. One of the most significant

areas of learning was the use of large-scale real-world data for building a

recommendation system. We worked with over 70,000 place entries from

FourSquare, and through this process, we gained experience in data cleaning,

semantic clustering, and vector-based similarity calculations using techniques such

as cosine similarity and the OpenAI embedding API. This helped us understand how

machine learning concepts can be applied practically in a real application.

On the backend side, we deepened our knowledge in developing backend

services using FastAPI. We also became more comfortable with deploying services

to the cloud using AWS tools like EC2, RDS, and S3. Setting up authentication using

OAuth2, implementing rate limiting, and ensuring secure data access gave us

70

hands-on experience in backend security and robustness. In addition, we learned to

use Python virtualization and GitHub Actions for automating deployment pipelines,

which significantly improved our DevOps skills.

From a frontend and mobile development perspective, working with React

Native allowed us to implement cross-platform features that run on both Android and

iOS devices. We also learned to design responsive UI components and integrate

external APIs such as Google Maps and OpenRouteService. Overall, this project

provided us with a valuable opportunity to connect the theoretical knowledge gained

during our undergraduate education with practical, real-world software engineering

challenges. Each team member was exposed to new technologies and

responsibilities that contributed to both individual and collective growth.

8.​ Conclusion and Future Work

Overall, SürDur aims to enhance road trip experiences by offering users

personalized stopover recommendations along the route and integrated live

navigation. The application’s personalized point-of-interest suggestion system,

dynamic route adjustment, and social media features work together to create a richer

and more interactive journey for travelers. This version of our application successfully

delivers all core functionalities planned, including destination selection, route

creation, personalized POI recommendation, live navigation, social sharing and

personal archive features.

However, there are still areas open to future development. Occasionally,

minor delays occur when retrieving place data from third-party APIs, which can briefly

affect the responsiveness of the suggestion system. Although this does not impact

the overall functionality, optimizing data retrieval speed is a priority for the next

iterations. Additionally, the personalized recommendation system can be further

improved by introducing more reliable user profiling techniques based on data

collected from active users in a timespan. In future versions, the application will

expand its database to include more diverse stopovers, implement additional route

filters such as budget-friendly options, and introduce a real-time incident alert system

during navigation.

71

9.​ Glossary
●​ Point of Interest (POI) – A location that may be of interest to a traveler, such as

restaurants, tourist attractions, gas stations, and rest stops.

●​ Route Planning – The process of determining the best path from a starting point to a

destination, considering factors such as road conditions, distance, and travel

preferences.

●​ Personalized Recommendations – Suggestions for POIs that are tailored to a

user’s preferences, travel history, and behavior.

●​ Navigation System – A digital system that provides real-time route guidance using

GPS and mapping technologies.

●​ Social Media Integration – The incorporation of social networking features, such as

sharing routes, voting on places, and following other users.

●​ Caching – The temporary storage of frequently accessed data to reduce retrieval

time and improve performance.

●​ Machine Learning (ML) – A subset of artificial intelligence that enables a system to

learn from data and improve its recommendations over time.

●​ OAuth2 – An authorization framework that enables third-party applications to grant

access to user accounts without exposing login credentials.
●​ API – Application Programming Interface

●​ AWS – Amazon Web Services

●​ CRUD – Create, Read, Update, Delete (basic database operations)

●​ DBMS – Database Management System

●​ DDoS – Distributed Denial of Service (a cyber attack)

●​ GPS – Global Positioning System

●​ ML – Machine Learning

●​ ORM – Object-Relational Mapping (a programming technique for interacting with

databases)

●​ POI – Point of Interest

●​ RDS – Relational Database Service (AWS service for database hosting)

●​ SQL – Structured Query Language (used for managing databases)

●​ UI – User Interface

●​ UX – User Experience

72

10.​ References

[1] Amazon Web Services, "Amazon RDS for MySQL pricing," [Online].

Available: https://aws.amazon.com/tr/rds/mysql/pricing/?pg=pr&loc=2. [Accessed:

Nov. 19, 2024].

[2] Sphinx Solution, "Cost to put an app on the App Store," [Online]. Available:

https://www.sphinx-solution.com/blog/cost-to-put-an-app-on-the-app-store/.

[Accessed: Nov. 19, 2024].

[3] IEEE, "IEEE Standard 1471: Recommended practice for architectural

description of software-intensive systems," [Online]. Available:

https://standards.ieee.org/ieee/1471/2187/. [Accessed: Nov. 19, 2024].

[4] Object Management Group, "Unified Modeling Language (UML), version

2.5.1," [Online]. Available: https://www.omg.org/spec/UML/2.5.1/About-UML/.

[Accessed: Nov. 19, 2024].

[5] G. Booch, J. Rumbaugh, and I. Jacobson, "The Unified Modeling

Language user guide," IEEE, 1999. [Online]. Available:

https://ieeexplore.ieee.org/document/720574. [Accessed: Nov. 19, 2024].

[6] International Organization for Standardization, "ISO 31000: Risk

management," [Online]. Available:

https://www.iso.org/iso-31000-risk-management.html/. [Accessed: Nov. 19, 2024].

[7] New Jersey Institute of Technology, "IEEE citation style guide," [Online].

Available: https://researchguides.njit.edu/ieee-citation/ieeereferencing/. [Accessed:

Nov. 19, 2024].

[8] W. Pree, "Design patterns for object-oriented software development,"

IEEE, 1995. [Online]. Available: https://ieeexplore.ieee.org/document/875998/.

[Accessed: Nov. 19, 2024].

[9] UML Diagrams, "UML 2.5 diagrams overview," [Online]. Available:

https://www.uml-diagrams.org/uml-25-diagrams.html. [Accessed: Nov. 19, 2024].

73

https://aws.amazon.com/tr/rds/mysql/pricing/?pg=pr&loc=2
https://www.sphinx-solution.com/blog/cost-to-put-an-app-on-the-app-store/
https://standards.ieee.org/ieee/1471/2187/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://ieeexplore.ieee.org/document/720574
https://www.iso.org/iso-31000-risk-management.html/
https://researchguides.njit.edu/ieee-citation/ieeereferencing/
https://ieeexplore.ieee.org/document/875998/
https://www.uml-diagrams.org/uml-25-diagrams.html

[10] IEEE, "IEEE Standard 830: Recommended practice for software

requirements specifications," [Online]. Available:

https://standards.ieee.org/ieee/830/1222/. [Accessed: Nov. 19, 2024].

[11] International Organization for Standardization, "ISO 9001: Quality

management systems," [Online]. Available:

https://scc.isolutions.iso.org/obp/ui#iso:pub:PUB100464. [Accessed: Nov. 19, 2024].

[12] George Mason University, "IEEE style citation guide," [Online]. Available:

https://infoguides.gmu.edu/ieee_style#s-lg-box-29326431. [Accessed: Nov. 19,

2024].

74

https://standards.ieee.org/ieee/830/1222/
https://scc.isolutions.iso.org/obp/ui#iso:pub:PUB100464
https://infoguides.gmu.edu/ieee_style#s-lg-box-29326431

	Final Report
	Table of Contents
	1.​Introduction
	2.​Requirements Details
	2.1.​Functional Requirements
	2.1.1.​Sign Up & Login
	2.1.2.​Destination Selection
	2.1.3.​Point of Interest Suggestion
	2.1.4.​Social Media
	2.1.5.​Archives
	2.1.6.​Live Route Navigation
	2.1.7.​Profile Editing & Setting Adjustment

	2.2.​Nonfunctional Requirements
	2.2.1.​Usability
	2.2.2.​Reliability
	2.2.3.​Performance
	2.2.4.​Supportability
	2.2.5.​Scalability

	3.​Final Architecture and Design Details
	3.1.​Overview
	3.2.​Subsystem Decomposition
	3.2.1.​Presentation Layer
	3.2.2.​Business Logic Layer
	3.2.3.​Data Access Layer
	3.2.4.​Database Layer

	3.3.​Services
	3.3.1.​SürDur Core
	3.3.2.​ML / Recommendation Service
	3.3.3.​Maps Service
	3.3.4.​Social Media

	3.4.​Hardware/Software Mapping
	3.5.​Persistent Data Management
	3.6.​Access Control and Security

	4.​Development/Implementation Details
	4.1.​Presentation Layer Services
	4.2.​Server Layer Services
	4.3.​Data Access Layer Services
	4.4.​Data Preprocessing
	4.5.​Recommendation Mechanism

	5.​Test Cases and Results
	5.1.​Test Cases for Functional Requirements
	5.2.​Test Cases for Non-functional Requirements

	6.​Maintenance Plan and Details
	6.1.​Agile-Based Maintenance Approach
	6.2.​User Feedback Collection and Processing
	6.3.​Version Control and Release Management
	6.4.​Monitoring Strategy
	6.5.​Deployment and Update Strategy
	6.6.​Backup and Disaster Recovery Plan
	6.7.​Third-Party Services Maintenance

	7.​Other Project Elements
	7.1.​Consideration of Various Factors in Engineering Design
	7.1.1.​Constraints
	7.1.1.1.​Development Constraints
	7.1.1.2.​Economic Constraints
	7.1.1.3.​Technological Constraints
	7.1.1.4.​Social Constraints
	7.1.1.5.​Safety Constraints
	7.1.1.6.​Sustainability Constraints

	7.1.2.​Standards
	7.1.2.1.​IEEE 1471
	7.1.2.2.​UML 2.5.1
	7.1.2.3.​IEEE 830
	7.1.2.4.​ISO 31000
	7.1.2.5.​IEEE Citation Style

	7.2.​Ethics and Professional Responsibilities
	7.2.1.​Professional Responsibilities
	7.2.2.​Ethical Responsibilities

	7.3.​Teamwork Details
	7.3.1.​Contributing and Functioning Effectively on the Team
	7.3.1.1.​Bora Haliloğlu
	7.3.1.2.​Burak Oruk
	7.3.1.3.​Emir Tuğlu
	7.3.1.4.​Mustafa Gökalp Gökdoğan
	7.3.1.5.​Tevfik Emre Sungur

	7.3.2.​Helping to Create a Collaborative and Inclusive Environment
	7.3.3.​Taking a Lead Role and Sharing Leadership on the Team
	7.3.4.​Meeting Objectives

	7.4.​New Knowledge Acquired and Applied

	8.​Conclusion and Future Work
	9.​Glossary
	10.​References

