

CS 492 - Senior Design Project

SürDur

Spring 2025

Detailed Design Report

T2419

Bora Haliloğlu - 22101852

Burak Oruk - 22102443

Emir Tuğlu - 22003165

Mustafa Gökalp Gökdoğan - 22102936

Tevfik Emre Sungur - 22102377

Table of Contents
Table of Contents... 2
1. Introduction.. 4

1.1. Purpose of the System.. 4
1.2. Design Goals...4

1.2.1. Usability..4
1.2.2. Reliability.. 4
1.2.3. Performance...5
1.2.4. Supportability..5
1.2.5. Scalability... 5

1.3. Definitions, Acronyms, and Abbreviations...6
Definitions...6
Acronyms and Abbreviations..6

1.4. Overview... 7
2. Current Software Architecture..8

2.1. Market & Competitor Analysis... 8
2.1.1. Roadtrippers...8
2.1.2. Roadie.. 8
2.1.3. Sygic Travel..9
2.1.4. Google Maps.. 9
2.1.5. Yandex Maps..9

2.2. Comparison with Competitors... 9
3. Proposed Software Architecture.. 10

3.1. Overview... 10
3.2. Subsystem Decomposition.. 11

3.2.1. Presentation Layer..11
3.2.2. Business Logic Layer..11
3.2.3. Data Access Layer..11
3.2.4. Database Layer.. 11

3.3. Hardware/Software Mapping...12
3.4. Persistent Data Management..12
3.5. Access Control and Security... 13

4. Subsystem Services.. 14
4.1. Presentation Layer Services.. 14
4.2. Server Layer Services...14
4.3. Data Access Layer Services.. 16
5. Test Cases...17

5.1. Test Cases for Functional Requirements.. 17
5.2. Test Cases for Non-functional Requirements..30

6. Consideration of Various Factors in Engineering Design..37
6.1. Constraints.. 37

6.1.1. Development Constraints... 38
6.1.2. Economic Constraints.. 38

2

6.1.3. Technological Constraints.. 39
6.1.4. Social Constraints.. 39
6.1.5. Safety Constraints.. 39
6.1.6. Sustainability Constraints... 39

6.2. Standards.. 39
6.2.1. IEEE 1471.. 39
6.2.2. UML 2.5.1...40
6.2.3. IEEE 830.. 40
6.2.4. ISO 31000.. 40
6.2.5. IEEE Citation Style... 41

7. Teamwork Details...41
7.1. Contributing and Functioning Effectively on the Team.. 41

7.2. Bora Haliloğlu.. 41
7.3. Burak Oruk.. 41
7.4. Emir Tuğlu... 42
7.5. Mustafa Gökalp Gökdoğan..42
7.6. Tevfik Emre Sungur... 42

7.7. Helping to Create a Collaborative and Inclusive Environment.................................. 42
7.8. Taking a Lead Role and Sharing Leadership on the Team..43

8. Glossary..48
9. References..49

3

1. Introduction
In this report, first, we will introduce our application, SürDur. Then, we will

discuss our design goals and architecture of the software. Later, we will elaborate on

test cases we designed both for functional and non-functional requirements. We will

also discuss constraints and factors we considered during our software design as

well as software standards we complied with. Lastly, we will conclude the report by

providing teamwork details in which contribution of each team member is provided.

1.1. Purpose of the System

SürDur aims to improve travel experiences. On long road trips, people pass

by many attractions and dining places. Using SürDur, users will be able to get

personalized stopover recommendations along their route. This way, users can get

point of interest recommendations, manually select stops, and discover points of

interests based on their preferences. Unlike traditional navigation apps that only

focus on the fastest route, SürDur suggests scenic and more interesting roads for a

better journey. By helping users find interesting places and better routes, SürDur

makes road trips more enjoyable and convenient.

1.2. Design Goals
1.2.1. Usability

The experience of the usage of SürDur will be evaluated based on both

application usage time, and personalized place suggestion satisfaction. Hence,

SürDur must provide a user-friendly interface by including simple, easy-to-use also

comprehensive components to provide a smooth state transaction from the main

page to the completion of the planned route. In that sense, SürDur should provide a

proper number of place suggestions along the main route in order to not exhaust the

user and also to prevent a lack of suggestions. The application must also execute

smoothly for both mobile devices (including Android and iOS) and CarPlay devices.

1.2.2. Reliability

SürDur must provide an uninterrupted navigation performance throughout the

road trip. Hence, the application should handle network errors by caching the map

information on the local machine, and continue to serve navigation, which is

independent from the network. Also, the application should include navigation

4

services in the case of a failed satellite connection, and inform the driver about the

issue safely. The application should continue its live navigation services in any

possible server downtime coming from maintenance and update processes. Other

than error handling criteria, the application should store backup of the main database

in the case of system crash and information loss.

1.2.3. Performance

SürDur must have an advanced data-retrieval service that would minimize the

response time in each route planning suggestion. The application should cache the

most related places from the enormous database of place information based on the

location, relevance and personal choices of the user. Other than data retrieval

performance, live navigation should have minimized lagging for the driver to have a

real-time driving experience for both satisfaction and safety.

1.2.4. Supportability

SürDur must have a globally compatible service and database structure. The

development environment should allow the addition or removal of microservices that

alter the place of information on the database without interrupting the main

functionality of the application. Also, the development environment should include

environment containerization services, to easily deploy new libraries and

configurations globally with one main structure. Other than a compatible development

environment, the system should include logging services to keep track of the

occurring events regularly, including errors and warnings.

1.2.5. Scalability

SürDur must handle enormous workloads on large-scale user scenarios by

considering storage space, user request overloading, and performance efficiency.

Hence, the application should include fast and asynchronous backend services,

information storage optimization, and efficient caching services. Other than

large-scale user demand, SürDur also should consider vast amounts of place data,

and how to store them and retrieve them efficiently. This issue also shows the

importance of information storage optimization and efficient caching services.

5

1.3. Definitions, Acronyms, and Abbreviations

This section provides definitions, acronyms, and abbreviations used

throughout the report to ensure clarity and consistency in terminology.

Definitions

● Point of Interest (POI) – A location that may be of interest to a traveler, such as

restaurants, tourist attractions, gas stations, and rest stops.

● Route Planning – The process of determining the best path from a starting point to a

destination, considering factors such as road conditions, distance, and travel

preferences.

● Personalized Recommendations – Suggestions for POIs that are tailored to a

user’s preferences, travel history, and behavior.

● Navigation System – A digital system that provides real-time route guidance using

GPS and mapping technologies.

● Social Media Integration – The incorporation of social networking features, such as

sharing routes, voting on places, and following other users.

● Caching – The temporary storage of frequently accessed data to reduce retrieval

time and improve performance.

● Machine Learning (ML) – A subset of artificial intelligence that enables a system to

learn from data and improve its recommendations over time.

● OAuth2 – An authorization framework that enables third-party applications to grant

access to user accounts without exposing login credentials.

Acronyms and Abbreviations

● API – Application Programming Interface

● AWS – Amazon Web Services

● CRUD – Create, Read, Update, Delete (basic database operations)

● DBMS – Database Management System

● DDoS – Distributed Denial of Service (a cyber attack)

● GPS – Global Positioning System

● ML – Machine Learning

● ORM – Object-Relational Mapping (a programming technique for interacting with

databases)

● POI – Point of Interest

● RDS – Relational Database Service (AWS service for database hosting)

● SQL – Structured Query Language (used for managing databases)

6

● UI – User Interface

● UX – User Experience

1.4. Overview

SürDur is a mobile application that offers users a pleasant road trip

experience by recommending personalized stopovers along the route. After selecting

a destination, users can explore a range of recommended points of interest (POIs)

drawn from various databases and travel blogs, guaranteeing a customized and rich

trip experience. Through its social media feature, which allows users to vote on

routes, follow other travelers, and discuss their travel experiences, SürDur promotes

community involvement in addition to route planning. This social component

improves user engagement and offers feedback loops for personalized

recommendations.

7

2. Current Software Architecture
In the current system, most of the potential SürDur users plan their route using either

Google Maps or Yandex Maps. These apps also have the feature of searching locations

along the route; however, this is not the main feature of the apps, therefore this feature is not

commonly used since these apps don’t have a recommendation mechanism that SürDur will

implement. The current mechanism in these apps is searching locations based on the

search keyword that the user enters. All locations that have the entered keyword in their

name are displayed without any filtering.

There are also other applications that try to solve the same problem with SürDur.

However, some of these apps are not supported in Türkiye, some others lack critical features

like navigation, and some have quite inferior user interfaces that makes it a hassle to use. A

list of the most important of these competitor applications can be found below.

 Contrary to the competitors, SürDur will provide precise place recommendations that

users would like to add to their route. Moreover, SürDur will have navigation functionality and

provide all of them in an easy-to-use and simple user interface. For these reasons, it is

inevitable that SürDur will reach a large market penetration and will be the go-to app for

anyone looking for stopovers along their route.

2.1. Market & Competitor Analysis
2.1.1. Roadtrippers
● Available in only the USA, Australia, Canada, and New Zealand.

● Creating road trips is free, but navigating along them requires a premium.

● Has some pre-created road trip suggestions.

● Users can choose what categories of recommendations they want.

● There is a map-saving option for offline usage.

● Has a chatbot that generates road trips by asking questions as a premium

feature.

● Has 1M+ downloads.

2.1.2. Roadie
● Has no navigation option, it exports the route to Google Maps for navigation.

● Locations can be searched by category.

● Waypoints can be added, deleted, and reordered.

● Users can save routes, but there is no sharing option.

● Free mode is restricted.

● Has 100K+ downloads.

8

2.1.3. Sygic Travel
● Has no navigation option, it exports the route to Google Maps for navigation.

● Dynamically retrieves locations as the user moves on the map.

● Has offline maps mode.

● Poor UI/UX.

● Has 1M downloads.

2.1.4. Google Maps
● Has an explore feature which shows all locations by category as the user

moves on the map.

● Has search along the route feature. Locations are retrieved by search

keywords, which is not useful.

2.1.5. Yandex Maps
● Has a separate explore option which shows locations of selected categories

as the user moves on the map.

● The explore option is separated from the route option, suggested locations

are not shown on the route.

2.2. Comparison with Competitors

 SürDur Roadtripp
ers

Roadie Sygic
Travel

Google
Maps

Yandex
Maps

Navigation + + - - + +

Displaying the POIs
and the route

together on a map

+ + + + + -

Retrieving POIs from
multiple sources

+ ? ? ? - -

Personalized POI
Recommendations

+ - - - + +

Sharing routes with
friends

+ - - + + +

Has a chatbot
assistant

- + - - - -

Available on Türkiye + - + + + +

Table 1: Comparison with Competitors

9

3. Proposed Software Architecture
3.1. Overview

The following component diagram shows the architecture in terms of

separate, self-contained components. When joined in a certain manner, they build

the whole software, and this diagram includes those connections and components. It

represents SürDur's layered architecture in a slightly more detailed way. SürDur’s

layered architecture is designed to promote modularity and maintainability of the

project. This will ensure modern architectural principles like modularity and
separation of concerns. It contains four main layers: Presentation Layer,
Business Logic Layer, Data Access Layer, and Database Layer.

10

Figure 1: Component Diagram of SürDur. Link: https://shorturl.at/iVIqa

3.2. Subsystem Decomposition

The High Level System Architecture consists of several key subsystems,

each of which plays a specific role within the overall architecture. By maintaining a

layered structure, the system ensures modularity, maintainability, and separation of

concerns, ultimately making the architecture more scalable and efficient. The

subsystems are divided into four main layers:

3.2.1. Presentation Layer

Presentation Layer includes four different UIs but during this project we will

prioritize the development of mobile UIs (Android and iOS). This layer will essentially

enable user interactions.

3.2.2. Business Logic Layer

The Business Logic Layer includes the core and supporting components like

AI Service and Maps Service. Each supporting component is directly connected to

SürDur’s Core since the core will act as coordinator of other components. AI Service

will return POI recommendations. Maps Service will be responsible for navigation

and pathfinding. Social Media will be responsible for post and user interaction

management. Therefore, this layer’s main function is supporting the application's

core business functions. It also acts as an intermediary between the presentation and

data access layers.

3.2.3. Data Access Layer

The Data Access Layer manages data persistence between the Business

Layer and the Database Layer with Tortoise ORM Library. It will simplify database

operations.

3.2.4. Database Layer

The Database Layer uses a MySQL database which includes all the data

about the users, places, posts, and route logs. It manages the data storage and

retrieval. It will provide this information through Tortoise ORM in the Data Access

Layer.

11

https://shorturl.at/iVIqa

3.3. Hardware/Software Mapping

SürDur does not require any additional software mapping other than the

device’s GPS functionality and internet connectivity. The application is designed to

operate without excessive computational requirements on personal devices. Users'

personal devices are primarily used to store locally cached route information and

user-preferred points of interest (POIs), ensuring that storage requirements remain

minimal.

SürDur is developed for both Android and iOS platforms. Any mobile device

that meets the requirements of an active GPS module and internet connection will be

suitable for running the application.

Figure 2: : Hardware/Software Mapping

SürDur is developed using FastAPI for the backend. The frontend is built with

React Native to ensure cross-platform compatibility. The Google Maps API is used for

map rendering and route creation, while AWS servers host the backend and

database.

The system architecture, the client’s device (smartphone) runs the SürDur

application and communicates with the server. Upon receiving a request from the

client, the server retrieves relevant data, including personalized POI

recommendations, route data, and user preferences. The server processes this data

and returns a response to the presentation layer on the client device.

3.4. Persistent Data Management

Our project leverages AWS RDS with MySQL to store and manage data,

including over 70,000 places sourced from the FourSquare API. Given the scale and

diversity of this data, we implemented a strategy to optimize category management

12

for more efficient querying and analysis. Initially, the raw place data included a vast

number of categories, some of which were not directly related to our project’s

purposes.

To address this, we applied the k-means clustering algorithm to group similar

categories, reducing redundancy and organizing the data into more coherent

clusters. After this automated clustering step, we manually refined the results to

correct vague or ambiguous classifications, ensuring a higher level of precision. This

hybrid approach — combining machine learning with human judgment — helped us

build a more reliable and manageable category structure, enhancing the overall

accuracy and usability of the data for our application.

3.5. Access Control and Security

SürDur implements access control and security mechanisms to ensure the

safety and usability of user data. The application uses FastAPI’s integration with the

OAuth2 authorization protocol to apply access control. Whenever a user logs in, a

unique and distinctive access token is generated and sent to the user. This token is

stored in the users’ devices and appended to each subsequent request coming from

that user. This way, the server can identify from which user a request originates from.

Knowing the owner of a request, the business logic implemented in the server side

determines whether the requested activity can be performed by the request owner. In

this way, users can only access data and functionality they are entitled to.

SürDur also has security mechanisms that ensure security of the user data.

User passwords are encrypted using the bcrypt algorithm before being stored in the

database. This prevents exposure of sensitive password data even if a data breach

occurs. The application also utilizes the SQLAlchemy ORM library to query the

database. This ensures that user inputs are sanitized before being passed into an

SQL query, hence preventing SQL injection attacks. Moreover, in the client devices,

authentication tokens are stored in secure storage rather than local storage which is

vulnerable to XSS attacks.

SürDur will also implement additional measures to protect the system against

brute force attacks and API abuse. Using the slowapi tool, rate limiting will be

implemented in the server to restrict the number of requests a user can perform

within a time interval. This way, we will prevent attacks like user enumeration,

credential guessing, and API abuse. Moreover, the system will have logging

mechanisms to detect and respond to any kind of security threat.

13

4. Subsystem Services
The Subsystem Services section details the functional components within each

subsystem of the SürDur application. These services define the core operations that enable

various features of the system, ensuring seamless interaction between users and the

application. The system is structured into three main layers: Presentation Layer, Server
Layer and Data Access Layer. Each layer is responsible for specific tasks.

4.1. Presentation Layer Services

This layer contains services related to the user interface and interactions.

● Interactive Map Display Service: Handles rendering, animations, and

displaying dynamic and interactive map elements for the mobile application

(iOS, Android).
● Route Generation Service: Manages all user interactions, such as selecting

a destination, filtering POIs, and adding places to routes.

● Live Navigation Display Service: Presents real-time route navigation and

step-by-step directions, using Google Maps API and handles offline routing by

caching the route and directions.

● Social Media Display Service: Shows user-generated posts, upvotes, and

comments in the social media section of the app.

● Profile & Settings Service: Allows users to edit their profiles, adjust settings,

and manage preferences.

4.2. Server Layer Services

This layer contains services responsible for processing and logic execution.

These services are mainly interacted with the main database, which requires a Data

Access layer for mainly all server layer services. There is a decomposition of the

server layer services below.

14

Figure 3: Decomposition of Server Layer Services

● User Authentication Service: Manages user login, registration, and session

handling. This service has to be configured before other services to execute,

meaning all the other server services are dependent on authentication service. This

service interacts with the User Data Access layer to handle safe and robust database

logic functions.

● AI-Based Recommendation Service: Interacts with our custom database that holds

both the user preferences and all the place information across the Türkiye. Analyzes

user preferences and suggests personalized point of interests (POI) along the route

using destination information and word embedding-based cosine similarity approach

between place tags that has been gathered from the largest place databases (e.g.

FourSquare) and user tag weights. User preferences will be updated after the route

completion.

● User Service: Handles post-authentication user-related use-cases, such as profile

editing, personal information retrieval. This service interacts with the User Data

Access layer to handle safe and robust database logic functions.

● Route Service: Handles route-related use cases other than route recommendation;

such as adding and removing places inside a completed route, deleting and editing

route information. This service interacts with the Route Data Access layer to handle

15

safe and robust database logic functions.

● Post Service: Handles social media related user interactions, including posting,

upvoting, following users, and sharing routes. The posts are retrieved with batches to

secure robustness and performance. This service interacts with the Post Data

Access layer to handle safe and robust database logic functions.

● Archive Service: Manages personal route and post archive for each individual user,

allowing personal archive organization, sharing completed routes as posts, and

handling saved routes from other user’s posts.

4.3. Data Access Layer Services

This layer ensures that data is retrieved and stored efficiently between the

Business Logic Layer and the Database.

● ORM Data Retrieval Service: Uses sqlAlchemy ORM to fetch and update

database entries efficiently.

● Data Synchronization Service: Ensures that offline data (such as cached

route information) is synced when the user regains connectivity.

● User Data Management Service: Fetches and updates user information,

such as travel history (archives), personal preferences, and saved routes.

● POI Data Fetching Service: Retrieves place details, categories, and

popularity rankings from the database layer filled with data from external

sources (e.g. FourSquare).

16

5. Test Cases
5.1. Test Cases for Functional Requirements

17

Test ID 1.1 Category System Test Severity Major

Objective Verify that an embedding vector is correctly generated for each category using
OpenAI’s text-embedding-ada-002 model.

Steps 1. Check if each category is generated successfully.
2. Check whether the semantically similar categories also have close

vector embeddings.

Expected The vector correctly symbolizes each category, even if the category
contains Turkish words.

Date-Result To be filled after execution.

Test ID 1.2 Category Security Severity Major

Objective Verify that the Recommendation Engine is not prone to attacks such as DDoS

Steps 1. Check if the server is usable under a heavy load of requests.
2. Check if one user is able to damage the system by sending multiple

queries.

Expected The server will recognize that the receiving queries are overwhelming the
server and initiate a control mechanism.

Date-Result To be filled after execution.

18

Test ID 1.3 Category System Test Severity Critical

Objective When a user selects multiple categories, verify that their profile vector is correctly
computed using the chosen aggregation method

Steps 1. Check if the backend can handle multiple categories in the
recommendation system.

2. Check if the UX is smooth when multiple categories are selected.

Expected The recommendation profile should be updated with respect to all the
selected categories.

Date-Result To be filled after execution.

Test ID 1.4 Category Functional
Test

Severity Critical

Objective Given the same set of selected categories, ensure that the generated profile vector
is always the same (deterministic behavior)

Steps 1. Check if the system has deterministic behavior when categories are
selected for recommendation.

2. Check if the profile vector has the same value for the same
categories.

Expected The two profiles that were saved after the calculation should be the same.
In other words, there should be a deterministic behaviour.

Date-Result To be filled after execution.

Test ID 1.5 Category System Test Severity Major

19

Objective When exploration is enabled, ensure that the recommendations include some
diverse or less similar places, not just the top matches.

Steps 1. Check if when exploration is enabled in the recommendation
system the exploration results include diversity.

Expected The results should include diverse recommendations.

Date-Result To be filled after execution.

Test ID 1.6 Category Integration
Test

Severity Major

Objective Tests whether data is correctly passed between microservices and stored in the
database.

Steps 1. Check whether the data is lost between microservices.
2. Check whether the data is stored without any loss in the database.
3. Check if the microservices correctly modify the data
4. Check if the modified data is sent without any loss over the

network.

Expected There should not be any loss at any point in the transactions.
The modifications done to the data should be as expected.

Date-Result To be filled after execution.

Test ID 1.7 Category System Test Severity Major

Objective Verifies that a user receives a confirmation email after successful registration.

Steps 1. Check if the user recieves a mail after successful registration.
2. Check if the mail received has the correct content and is sent to the

correct recipient.

Expected The mail should be sent to the correct recipient and the content should be
as expected meaning that there should not be any distortion in the content.

20

Date-Result To be filled after execution.

Test ID 1.8 Category Security Test Severity Major

Objective Verify that users can successfully register with valid credentials.

Steps

1. Register with valid credentials and check if it succeeds.
2. Try registering with missing or incorrect fields and verify error

messages.
3. Attempt to register with an existing username or email.
4. Test with special characters and non-ASCII inputs to check system

stability.

Expected
The system should allow valid registrations while preventing invalid inputs
and duplicate accounts. It should handle all inputs without crashing and
enforce security measures effectively.

Date-Result To be filled after execution.

Test ID 1.9 Category Functionality Test Severity Minor

Objective Verify that users can filter POIs based on categories.

Steps

1. Navigate to the main screen for route recommendation.
2. Select a destination and view the suggested POIs.
3. Apply a filter by selecting a specific category (e.g., restaurants, gas

stations).
4. Verify that only POIs from the selected category are displayed.
5. Remove or change the filter and ensure that results update

accordingly.

Expected
The system should correctly display POIs based on the selected category,
updating the suggestions dynamically. Unfiltered results should restore
when no category is selected.

Date-Result To be filled after execution.

Test ID 1.10 Category Functionality Test Severity Major

Objective Verify that POI details (ratings, descriptions) are correctly displayed on the
recommendation stage.

21

Steps

1. Navigate to the main screen for route recommendation.
2. Select a destination and view the suggested POIs.
3. Click on a recommended POI to open its details.
4. Check if the POI details such as name, description, rating, and

category are displayed correctly.
5. Compare displayed details with the expected values from the

database or API.

Expected
The system should accurately display the correct POI name, description,
ratings, and other relevant details. Any missing or incorrect information
should not be shown.

Date-Result To be filled after execution.

Test ID 1.11 Category Functionality Test Severity Major

Objective
Verify that POI suggestions are displayed on the map correctly based on the
destination route.

Steps

1. Select a starting point and a destination on the map.
2. Allow the system to generate a route between the two points.
3. Check if suggested POIs appear along the route.
4. Click on a suggested POI and verify its location matches the

expected coordinates.
5. Compare displayed POIs with actual relevant locations from the

database or API.

Expected
POI suggestions should be accurately placed along the selected route on
the map. Locations should correspond to real-world data, and misplaced or
missing POIs should not occur.

Date-Result To be filled after execution.

Test ID 1.12 Category Functionality Test Severity Moderate

Objective Verify that users can create posts with their previously saved routes.

Steps

1. Navigate to the ‘Archive’ section.
2. Select a previously saved route from the personal archive.
3. Click on the "Create Post" button.
4. Enter a title, description, and optionally add images.
5. Publish the post and verify that it appears in the social page.

22

Expected The system should allow users to create posts using their saved routes,
and the post should be visible in the social feed with the correct details.

Date-Result To be filled after execution.

Test ID 1.13 Category Functionality Test Severity Minor

Objective Verify that users can follow/unfollow other users.

Steps

1. Navigate to the social page to display posts.
2. Click on a user's profile to open their details.
3. Click the "Follow" button and verify that the status changes to

"Following."
4. Refresh the page and ensure the following status persists.
5. Click "Unfollow" and confirm that the status updates correctly.

Expected Users should be able to follow and unfollow others seamlessly, with the
status updating correctly and persisting after refresh.

Date-Result To be filled after execution.

Test ID 1.14 Category Functionality Test Severity Moderate

Objective Verify that users can upvote/downvote and retract their votes on posts correctly.

Steps

1. Navigate to the social page and find a post.
2. Click the "Upvote" button and verify that the vote count increases.
3. Click the "Downvote" button and check if the vote count adjusts

accordingly.
4. Click the same vote button again to retract the choice and ensure

the count updates properly.
5. Refresh the page and confirm that the vote status remains

consistent.

Expected
Users should be able to upvote, downvote, and retract their choices
without errors. The vote count should update correctly and persist after a
refresh.

Date-Result To be filled after execution.

Test ID 1.15 Category System Test Severity Major

23

Objective

Steps 1. Check if when exploration is enabled in the recommendation
system the exploration results include diversity.

Expected The results should include diverse recommendations.

Date-Result To be filled after execution.

Test ID 1.16 Category System Test Severity Major

Objective When exploration is enabled, ensure that the recommendations include some
diverse or less similar places, not just the top matches.

Steps 1. Check if when exploration is enabled in the recommendation
system the exploration results include diversity.

Expected The results should include diverse recommendations.

Date-Result To be filled after execution.

Test ID 1.17 Category System Test Severity Major

Objective When exploration is enabled, ensure that the recommendations include some
diverse or less similar places, not just the top matches.

Steps 1. Check if when exploration is enabled in the recommendation
system the exploration results include diversity.

Expected The results should include diverse recommendations.

Date-Result To be filled after execution.

24

Test ID 1.18 Category System Test Severity Critical

Objective Users would select any place from the search engine.

Steps 1. Enter search.
2. Search for any place and select it as the destination.

Expected A route should be created with the correct locations and should perform
routing operations.

Date-Result To be filled after execution.

Test ID 1.19 Category System Test Severity Critical

Objective When selecting a destination from microservices, the unknown place should be
available within the application regarding the operations related to that route.

Steps 1. Enter search.
2. Select detailed search.
3. Search and select a destination that is not in the SürDur DB.

Expected Routing operations should continue as usual.

Date-Result To be filled after execution.

Test ID 1.20 Category Functionality
Test

Severity Major

Objective When a place not from the SürDur database is selected, it should be held
effectively in the backend. When all the references to the temporary destination
are deleted, the object should be garbage collected.

Steps 1. Search and select a destination that is not in the SürDur DB.
2. Save the route.
3. Verify the destination is stored in the backend.
4. Delete all references to the temporary destination (e.g. the saved

route).

25

Expected The temporary place is no longer stored in the backend.

Date-Result To be filled after execution.

Test ID 1.21 Category Unit Test Severity Minor

Objective When the recommendation engine selects places from the database, if a place
belonging to several classes is selected, it should not be served several times but
once.

Steps 1. Enter search.
2. Select destination.
3. Wait until recommendations are provided.

Expected Recommendations are given as unique subsets of places.

Date-Result To be filled after execution.

Test ID 1.22 Category Unit Test Severity Minor

Objective Fetched places should be within a constant radius of the road.

Steps 1. Enter search.
2. Select destination.
3. Select radius r for the recommendations to be searched within.
4. Wait until recommendations are provided.

Expected Recommendations are within the r kilometers radius from the route.

Date-Result To be filled after execution.

26

Test ID 1.23 Category Regression
Test

Severity Minor

Objective Ensures that users can upload a profile picture, and existing functionality remains
unaffected.

Steps
1. Log in to the application.
2. Navigate to the profile settings page.
3. Click on the "Upload Profile Picture" button.
4. Select an image from the device.
5. Confirm and save changes.

Expected Profile picture is uploaded and displayed correctly without affecting other
functionalities.

Date-Result To be filled after execution.

Test ID 1.24 Category Integration
Test

Severity Major

Objective Ensures that the recommendation engine fetches relevant POIs based on user
preferences.

Steps
1. The user logs in and selects a destination.
2. The system retrieves POIs from various sources.
3. Apply user-specific filtering based on preferences.
4. Display recommended POIs along the route.

Expected The user sees relevant POIs based on previous selections and
interactions.

Date-Result To be filled after execution.

Test ID 1.25 Category Acceptance
Test

Severity Major

27

Objective Confirms that users can create, edit, and share posts successfully.

Steps 1. Login and navigate to the social feed.
2. Click on "Create Post" and add route details.
3. Attach images and a description.
4. Click "Share" and verify the post appears in the feed.
5. Edit the post and save changes.

Expected Users can create, modify, and share posts without errors.

Date-Result To be filled after execution.

Test ID 1.26 Category Functional
Test

Severity Moderate

Objective Ensures that search queries return accurate and relevant results without knowing
the internal implementation.

Steps 1. Open the app and navigate to the search bar.
2. Type a location or POI category.
3. Press enter and observe results.
4. Verify that search results are relevant to the query.

Expected The system displays correct results matching the entered keywords.

Date-Result To be filled after execution.

Test ID 1.27 Category Security Test Severity Major

Objective Ensures that users cannot access or modify data they are not authorized.

Steps 1. Attempt to access another user's profile settings via URL
manipulation.

2. Try sending a request to modify someone else's data.
3. Analyze server response codes.
4. Ensure database restrictions prevent unauthorized access.

Expected Unauthorized attempts are blocked, and security logs record suspicious
activities.

28

Date-Result To be filled after execution.

Test ID 1.28 Category Functionality
Test

Severity Moderate

Objective Verify that users can add/remove POIs to the route in between the starting and
destination locations.

Steps 1. Select a destination by clicking a location on the map.
2. Click on the “Create Route” button.
3. Add two recommended POIs to the route by clicking the “+” icon

next to them..
4. Remove a POI from the route by clicking the “-” icon next to it..

Expected One POI remains in the route.

Date-Result To be filled after execution.

Test ID 1.29 Category Functionality
Test

Severity Moderate

Objective Verify that users can change the order of POIs in their routes.

Steps 1. Select a destination by clicking a location on the map.
2. Click on the “Create Route” button.
3. Add POI A to the route by clicking the “+” icon next to it.
4. Add POI B to the route by clicking the “+” icon next to it.
5. Drag POI B in front of POI A in the route overview bar.

Expected POI B precedes POI A in the route.

Date-Result To be filled after execution.

Test ID 1.30 Category Security Test Severity Major

Objective Verify that users cannot inject and execute malicious code as a text input while
creating posts.

29

Steps 1. Navigate to the “Archive” page.
2. Select a previously saved route from the archive.
3. Click on the "Create Post" button.
4. Put malicious code into the “description” section.
5. Click on the “Create” button.

Expected The inserted malicious code is not executed.

Date-Result To be filled after execution.

Test ID 1.31 Category UI Test Severity Major

Objective Verify that users can enter data only in the correct format to email, date, and
phone number fields in register and edit profile pages

Steps 1. Go to the “Sign Up” page.
2. Enter a non-email text to email field.
3. Enter an invalid date.
4. Enter an invalid phone number.
5. Click on the “Sign Up” button.

Expected For each field, an error message pops up after the user enters the invalid
input.

Date-Result To be filled after execution.

Test ID 1.32 Category System Test Severity Major

Objective Verify that API endpoints validate data before storing in the database

Steps 1. Send a request containing invalid sign up credentials to the
/register endpoint of the server.

Expected The server returns an error message indicating which field contains invalid
input.

Date-Result To be filled after execution.

30

Test ID 1.33 Category Functionality
Test

Severity Major

Objective Verify that users can select their current location as a starting point for a route.

Steps 1. Select a destination by clicking a location on the map.
2. Click on the “Select starting point” button
3. Click on the “Use my current location” button.
4. Click on the “Create” button.

Expected The route containing the user location as the starting point is created.

Date-Result To be filled after execution.

Test ID 1.34 Category Functionality
Test

Severity Major

Objective Verify that users can edit their profile.

Steps 1. Log in to a user account.
2. Click on the profile picture icon on the top right corner.
3. Click on the edit icon.
4. Change data in each field.
5. Click on the “Edit” button.

Expected Profile of the user is updated with the entered information.

Date-Result To be filled after execution.

Test ID 1.35 Category UI Test Severity Major

Objective Recommendations are given as brief information cards at the bottom bar.

Steps 1. Select destionation and create a route.
2. Wait for the engine to give recommendations.

5.2. Test Cases for Non-functional Requirements

Test ID 2.1 Category System Test Severity Minor

Objective Verify that embeddings are stored efficiently (e.g., SSD storage is properly used
and memory limits are respected).

Steps 1. Check quantization to store the embeddings and save the memory
usage.

2. Check Huffman coding to store the embeddings and save the
memory usage.

3. Check HDF5 to store the embeddings and save the memory
usage.

4. Check which one is best.

Expected The result should be within the memory limits of the server.

Date-Result To be filled after execution.

31

Expected A slide bar with selectable recommendations are displayed at the bottom
of the map area.

Date-Result To be filled after execution.

Test ID 1.36 Category UI Test Severity Major

Objective Recommendation selection bar should have a detailed page when dragged up.

Steps 1. Select a destination and create a route.
2. Wait for the engine to give recommendations.
3. Pull the recommendations tab up by holding and swiping.

Expected The screen shows the recommendations given by the engine in detailed
form.

Date-Result To be filled after execution.

Test ID 2.2 Category Usability Severity Minor

Objective Ensure that the POI recommendation page is not getting stuck when the
recommendation engine is running

Steps 1. Check if the application is still responsive when the backend is
processing.

2. Check if the UI is informative and provides a smooth UX
experience.

Expected The UI should be fully functional throughout the response waiting.

Date-Result To be filled after execution.

32

Test ID 2.3 Category Usability Severity Minor

Objective If for some reason the Backend API times out, the correct message should be
displayed

Steps 1. Check if the application can handle time-out error from the server.
2. Check if the application can handle 5xx errors.

Expected The UI does not get stuck when there is an error in the system either from
the frontend or the backend.

Date-Result To be filled after execution.

Test ID 2.4 Category Functionality
Test

Severity Critical

Objective When selecting places, the recommendations should not be far off from the user's
preferences.

Steps 1. Set user preferences.
2. Request place recommendations from the system.
3. Plot the distribution of the given recommendation tags.
4. Verify the distribution aligns with the user’s preferences.
5. Check that a k percentage of recommendations explore new but

relevant categories.

Expected Users receive recommendations that are related to their preferences.

33

Date-Result To be filled after execution.

Test ID 2.5 Category Resilience
Test

Severity Major

Objective When a fault in the backend occurs, the out-of-database places should not cease
to exist.

Steps 1. Add an out-of-database place to the system.
2. Simulate a backend fault (e.g., crash or service restart).
3. Restore the backend and query for the place.
4. Verify the out-of-database place still exists and is accessible.

Expected All place instances should remain intact.

Date-Result To be filled after execution.

Test ID 2.6 Category Performance
Testing

Severity Major

Objective Measures how quickly search results are returned after a place search query.

Steps 1. Execute a search request for a popular location.
2. Record the response time.
3. Repeat with different queries.
4. Measure average response time across multiple attempts.

Expected Search results should return within an acceptable threshold, < 2 seconds.

Date-Result To be filled after execution.

Test ID 2.7 Category Performance
Testing

Severity Major

Objective Measure how quickly place recommendations are generated based on personal
category preferences.

34

Steps 1. Simulate personal category preferences for one test user.
2. Execute a place recommendation request based on a selected

route.
3. Record the response time for recommendations to appear.
4. Repeat the test with different test users with different preferences.
5. Measure and analyze the average response time across multiple

attempts.

Expected Search results should return within an acceptable threshold, < 2 seconds.

Date-Result To be filled after execution.

Test ID 2.8 Category Load Testing Severity Major

Objective Simulates 100 concurrent users making route searches.

Steps 1. Deploy a test scenario with 100 simulated users.
2. Monitor server performance metrics.
3. Check if any delays or crashes occur.
4. Evaluate system scalability.

Expected The system should handle the load without much performance
degradation.

Date-Result To be filled after execution.

Test ID 2.9 Category Stress
Testing

Severity Major

Objective Tests system stability under maximum load conditions.

Steps 1. Simulate extreme traffic with thousands of requests per second.
2. Observe system behavior and log response times.
3. Check for bottlenecks in backend processing.
4. Determine the breaking point of the system.

Expected The system should degrade gracefully, not crash, and maintain partial
functionality under high stress.

Date-Result To be filled after execution.

35

Test ID 2.10 Category Security
Testing Severity Major

Objective
Verify that sensitive user data, such as passwords, are encrypted when stored in
the database.

Steps

1. Register a new user with a password.
2. Access the database and retrieve stored user credentials.
3. Verify that the password is stored in a hashed format of bcrypt.
4. Attempt to decrypt or retrieve the original password from the

database.
5. Confirm that encryption is applied correctly and that plaintext

passwords are not stored.

Expected
Passwords should be securely hashed and stored using an
industry-standard encryption method. Plaintext passwords must never be
visible in the database.

Date-Result To be filled after execution.

Test ID 2.11 Category Performance
Testing Severity Major

Objective
Verify that caching mechanisms improve loading speed for frequently accessed
routes, such as archived routes and social posts.

Steps

1. Load a saved route from the archive and record the loading time.
2. Navigate to a social post containing a route and record the loading

time.
3. Repeat the actions multiple times to check if caching reduces

loading times.
4. Clear the cache and compare the loading times with cached

results.
5. Analyze the difference in response times before and after caching.

Expected Loading times should decrease for repeated actions due to caching,
improving overall system performance.

Date-Result To be filled after execution.

36

Test ID 2.12 Category Security Test Severity Major

Objective Ensure that the authentication token of inactive users will be deactivated after 1
hour.

Steps 1. Log in to a user account.
2. Save the received authentication token.
3. Wait for 1 hour.
4. Send a POST request to /post endpoint with the saved token.

Expected Server returns an error message indicating the user is not authorized to
perform that action.

Date-Result To be filled after execution.

Test ID 2.13 Category Security Test Severity Major

Objective Ensure that large number of requests coming from the same IP address will be
throttled down

Steps 1. Log in to a user account.
2. Save the received authentication token.
3. Write a script that continuously sends GET requests to the

/recommend endpoint with the saved authentication token.

Expected After the limit is reached, the server returns an error message indicating
that the user exceeded the request limit.

Date-Result To be filled after execution.

Test ID 2.14 Category Performance
Test

Severity Major

Objective Ensure that the time required to start the application from scratch is within a
reasonable interval.

Steps 1. Clear the local cache of the test device.
2. Start the timer.
3. Start the “SürDur” application.
4. Stop the timer when the application is loaded and ready to use.

37

Expected The measured time is less than 2 seconds.

Date-Result To be filled after execution.

Test ID 2.15 Category Documentati
on Test

Severity Moderate

Objective
Ensure that the system documentation is complete, accurate, and aligns with the
implemented features.

Steps 1. Open the latest version of the project documentation.
2. Compare system architecture details with the actual

implementation in the codebase.
3. Verify that API endpoints documented match the actual backend

API specifications.
4. Check if all features listed in the documentation exist and function

correctly in the application.
5. Ensure that user guides, installation instructions, and

troubleshooting steps are clear and up to date.
6. Identify any outdated, missing, or inconsistent information.

Expected Documentation should accurately reflect the current system architecture,
features, and API endpoints. User guides should provide clear and correct
instructions. No missing, outdated, or conflicting details should be in the
documentation.

Date-Result To be filled after execution.

6. Consideration of Various Factors in

Engineering Design
6.1. Constraints

This section will discuss the SürDur project's constraints in detail on aspects

of development, economic, technological, social, safety, and sustainability. Also, the

effects of global, cultural, social, environmental and economic factors on the app is

given in the following table:

 Effect Level Effect

Global 9 ● Take different roads, places into consideration.
● Limitations of sources, passes from one

country to another may affect the whole
design.

Cultural 9 ● Cultural preferences should be taken into
consideration in place recommendation.

● Local cultural point of interests should be
taken into consideration.

Social 9 ● Social post interactions between users should
be considered on personal preference
loggings.

● Follower-following system should be
considered on social content display.

Environmental 5 ● Less fuel consumption should be taken into
consideration in route generation.

Economic 7 ● Budget availability by the user should be taken
into consideration in place suggestions.

● Server maintenance fees should be evaluated
to decide how large amount of place data the
application can hold.

 Table 2: Factors that can affect analysis and design

6.1.1. Development Constraints
● The project app will be available for both iOS and Android.

● In a broader scope, the project’s UI also will be implemented for Apple

CarPlay and Android Auto.

● The mobile side of the project will be developed using React Native as

it’s compatible with both IOS and Android.

● The application will be developed with Python and FastAPI for the

back end and React-Native for the front end.

● OpenAI API will be used to extract categories of POIs from online

blogs by using language models.

38

● In categorizing POIs, NLP methodologies and tools will be used to

help mapping many categories into predetermined categories.

● Git and Github will be used as our version control system.

● MySQL will be used to store and access database components

related to both the application engine and the user data.

● The decision engine and the database will be kept on AWS servers.

● Notion will be used to keep track of the development process.

6.1.2. Economic Constraints
● The database will be kept on AWS servers. Annual payment for

reserving a micro-sized server space (1 GB of data space) from

Stockholm servers requires $94 [1].

● Publishing the app on mobile platforms has two economic constraints.

One is the $25 one-time registration fee on the Google Play Store

(Android), and the other is the annual $99 fee on the App Store (IOS)

[2].

● Frameworks and libraries that will be used to implement the project

such as FastAPI, React Native, and Expo, are free to use.

6.1.3. Technological Constraints
● The application will need an internet connection for all the

functionalities, such as route creation, navigation, social functions, and

profile operations.

● The application has to access the user’s location on route creation,

and navigation functions.

6.1.4. Social Constraints
● The application will allow the sharing of previously followed routes.

● The public route posts will include a title and a header which allows a

detailed explanation of the route. However, there is no further

text-based communication allowed on those posts.

● The posts have a voting system that shows the public appreciation of

users’ posts.

6.1.5. Safety Constraints
● Mobile app decisions will be made to minimize user interaction during

a car ride.

● The user will be asked to make choices before starting the ride.

● The live navigation service of SürDur will be designed primarily around

driver safety. Therefore, the effect level of safety is 10 out of 10.

39

6.1.6. Sustainability Constraints
● Server and publishing services need to be paid annually.

● An increase in the number of users may result in database

enlargement, which will result in higher server space costs.

6.2. Standards
6.2.1. IEEE 1471

Purpose:
IEEE 1471, a software-intensive system architecture documentation standard,

is ISO/IEC/IEEE 42010. It outlines developing an architecture description that offers

a shared comprehension of the system's structure, functionality, and essential

characteristics [8]. We can more easily comprehend system components and their

relationships thanks to IEEE 1471's assistance in clarifying the architecture. This

entails outlining the architecture's background, perspectives, interested parties, and

the reasoning behind essential choices [3].

Key Elements:
We document architectural choices in development; this outlines essential

decisions made during the design process, supporting information, and other factors.

Also, documenting architectural views in the project enables us to represent the

project's physical, process, development, and logical aspects.

6.2.2. UML 2.5.1

Purpose
A widely used modeling language for describing, building, visualizing, and

recording the structure and behavior of software systems is UML 2.5.1 [9]. It provides

a consistent method for drawing diagrams that explain various system components.

We can understandably display the system's structural and functional elements using

UML. This standard facilitates the creation of models for different views (such as

class, sequence, and activity diagrams), which helps with system design and

communication [4].

Key Aspects
Class, Component, and Deployment aspects define the system's static

structure. Use Case, Sequence, and Activity represent dynamic aspects of the

system, including interactions and workflows.

40

6.2.3. IEEE 830

Purpose
Writing Software Requirements Specifications (SRS) is standardized by IEEE

830. It establishes a thorough framework for recording functional and non-functional

requirements, guaranteeing accuracy, consistency, and comprehensiveness [10].

IEEE 830 offers a systematic style for specs reports that assists teams in organizing

requirements for easy understanding and verification by stakeholders, developers,

and testers. Project objectives, scope, requirements, assumptions, and restrictions

are all covered in this standard [5].

Key Aspects
This standard addresses the project's background, goal, and extent.

Additionally, it gives a summary of the operating environment, user attributes, and

product capabilities.

6.2.4. ISO 31000

Purpose
One standard that offers recommendations for efficient risk management is

ISO 31000. It aids businesses in recognizing, evaluating, and reducing risks, which

enhances decision-making and reduces uncertainty [11]. This standard exemplifies

proactive risk management by addressing potential project risks (technical,

operational, and financial) and mitigation techniques. Risk assessment frameworks,

prioritization, and controls are a few examples [6].

Key Aspects
Identifying potential risks that have an impact on the project. Assessing the

impact and probability of hazards that have been discovered. establishing measures

to reduce or eliminate risks. We can identify possible problems and dangers by

implementing risk management.

6.2.5. IEEE Citation Style

Purpose
IEEE Citation Style is a widely standardized approach for citing sources from

engineering, information technology, and allied fields. It increases the traceability and

dependability of the information by ensuring that sources are consistently mentioned.

IEEE Citation Style provides a uniform method of referring to external sources

(including research papers, technical publications, and standards) that ensures

41

accuracy and lucidity. When citations are appropriately formatted, readers may locate

sources for further context and proof [7].

Key Aspects
References match the list of references and are numbered in brackets (e.g.,

[1], [2])[12]. provides comprehensive information for every source and arranges

citations in numerical order.

7. Teamwork Details
7.1. Contributing and Functioning Effectively on the Team
7.2. Bora Haliloğlu

● Recommendation Service Design and Implementation

● Created Frontend components

7.3. Burak Oruk
● Helped to design the flow and handling of data to be used in the

recommendation service.

● Evaluated and processed the data to be inserted into database by the

following methods:

○ Using K-Means algorithm, grouped similar place categories.

○ Disbundled some of the clusters and made some hand-picking

to increase precision of the category groupings to be used in

the recommendation service.

● Helped implementing some minor backend services.

7.4. Emir Tuğlu
● Deployed the server in the cloud using AWS services.

● Implemented several pages and components in the frontend, and

connected them to the backend.

● Implemented several services in the backend.

7.5. Mustafa Gökalp Gökdoğan
● Implemented route related backend services and DAOs.

● Created the frontend structure and implemented many of the pages.

● Wrote the API scripts to fetch our places. Also, visualized these data.

42

7.6. Tevfik Emre Sungur
● Constructed the Data Access Layer structure on the backend

services, mostly on social page posts, and its implicit relationships

(e.g. upvoting / downvoting).

● Formed the MySQL database table structure and relationships.

● Integrated front and back social page services together, executed their

relative unit tests.

7.7. Helping to Create a Collaborative and Inclusive

Environment

To create a friendly and collaborative environment, we have organized small

groups to work on certain tasks, called work packages. Because team

members are already familiar with one another's abilities from previous

interactions, tasks will be assigned based on individual capabilities. This

strategy guarantees that each person makes an equitable and significant

contribution to the project.

To ensure that no one feels left behind, team members can also ask any work

package assignee for help if they run into problems. By successfully putting

this structure into practice, we hope to create a helpful, collaborative

environment where everyone feels involved and included.

7.8. Taking a Lead Role and Sharing Leadership on the

Team

Projects benefit greatly from having a leader because there is just one person

for the team to look up to, which makes progress easier and faster. We

separated our tasks into work packages and designated one person as the

leader of each package so that no one person would be overburdened with

the leadership responsibilities. Below is comprehensive information on the

work packages.

WP# Work package title Leader

WP1 Project Specification Document Gökalp Gökdoğan

WP2 Analysis and Requirement Report Tevfik Emre Sungur

WP3 Frontend Development Gökalp Gökdoğan

43

WP4 Backend Development Burak Oruk

WP5 Setting up the Database Tevfik Emre Sungur

WP6 Recommendation System
Development

Emir Tuğlu

WP7 Demo Bora Haliloğlu

WP8 Detailed Design Report Emir Tuğlu

WP9 Design Project Final Report Bora Haliloğlu

WP10 App Launch Burak Oruk

WP11 Final Demo Gökalp Gökdoğan

WP1: Project Specification Document

Start Date: 12 November 2024 End Date: 22 November 2024

Leader Gökalp Gökdoğan Members Involved All Members

Objectives: Prepare and deliver the Project Specification Document.

Tasks:
Task 1.1 Writing an Introduction: Describe the project in detail. Describe the
type of innovation that is being sought. Identify the limitations and ethical and
professional concerns.
Task 1.2 Writing Requirements: Describe the functional and non-functional
requirements in your writing.
Task 1.3 Writing Ongoing Discussions: Provide information on any
ambiguities in the project's specifics and outline potential future directions.
Task 1.4 Writing References: Use the proper citation formats and include
references for all sources used in the report.

Deliverables:
D1.1: Project Specification Document

WP2: Analysis and Requirement Report

Start Date: 3 December 2024 End Date: 16 December 2024

Leader Tevfik Emre Sungur Members Involved All Members

Objectives: Prepare and deliver the Analysis and Requirement Report.

Tasks:
Task 2.1 Scenarios
Task 2.2 Creation of Use-Case Diagram
Task 2.3 Creation of Object and Class Model
Task 2.4 Creation of Dynamic Models: Create Activity, Sequence, and State
Diagrams.

44

Task 2.5 Creation of UI Designs
Task 2.6 Other Analysis Elements: Identify the options and hazards, and
describe the elements that influenced the design. Additionally, describe the
professional and ethical obligations. Provide a thorough project strategy as well
as a road map for gaining the technical know-how required for the future.
Task 2.7 References: Use the proper citation formats and include references
for all sources used in the report.

Deliverables:
D2.1: Analysis and Requirement Report

WP3. Frontend Development

Start Date: 29 November 2024 End Date: May 2025

Leader Gökalp Gökdoğan Members Involved Bora Haliloğlu
Gökalp Gökdoğan
Emir Tuğlu

Objectives: Implementation of the front-end of the application according to the
UI Designs created for the Analysis Report.

Tasks:
Task 3.1 Implementation of Log-in & Sign-up pages
Task 3.2 Implementation of the Onboarding Page
Task 3.3 Implementation of the Main Page
Task 3.4 Implementation of Suggestion Page
Task 3.5 Implementation of the Navigation Page
Task 3.6 Implementation of the Search Page
Task 3.7 Connect front-end to back-end
Task 3.8 Optimizing performance of application

Deliverables:
D3.1: The Frontend of the app.

WP4: Backend Development

Start Date:16 November 2024 End Date: May 2025

Leader Burak Oruk Members Involved Tevfik Emre Sungur
Burak Oruk
Emir Tuğlu
Gökalp Gökdoğan

Objectives:Implementation of the back-end of the application according to the
design proposed in the Analysis Document.

45

Tasks:
Task 2.1: Initializing FastAPI project with correct dependencies
Task 2.2: Implementation of basic classes according to class diagram
Task 2.3: Implementing service layer
Task 2.4: Connecting the external services to service classes
Task 2.5: Testing controller endpoints via postman
Task 2.6: Connecting the back-end with front-end
Task 2.7: Deployment to AWS

Deliverables:
D2.1: The back-end application

WP5: Setting up the Database

Start Date:16 November 2024 End Date: February 2025

Leader Tevfik Emre
Sungur

Members Involved Tevfik Emre Sungur

Objectives:Designing and creating a database that can store high volume of
location data and allows low latency data retrieval.

Tasks:
Task 5.1: Design the database schema
Task 5.2: Create tables according to the design
Task 5.3: Collect and standardize data from different APIs and blogs:
Write scripts to collect data from the POI APIs and blogs. Then, standardize
this data to the same format and eliminate duplicate data before storing in the
database.
Task 5.4: Populate tables with the retrieved data: Save collected and
standardized data into the database.

Deliverables:
D5.1: The database that contains POI information.

WP6: Recommendation System Development

Start Date: January 2025 End Date: May 2025

Leader Emir Tuğlu Members Involved All Members

Objectives:Developing a recommendation system algorithm to provide users
personalized POI recommendations.

Tasks:
Task 6.1 Create Embeddings: Create the embeddings for the categories and
store them.
Task 6.2 Create Embedding Logic: Create the logic for the recommendation
for the embeddings.

46

Task 6.3 Create the Exploration System: Create the exploration logic.

Deliverables:
D6.1: The recommendation system that provides personalized
recommendations according to users’ preferences.

WP7: Demo

Start Date: 16 December 2024 End Date: 20 December 2024

Leader Bora Haliloğlu Members Involved All Members

Objectives: Prepare and deliver the Demo

Tasks:
Task 7.1 Prepare Slides: Prepare slides about the project, the problem that
project solves, market and competitor analysis, business model, etc.
Task 7.2 Prepare Demo: Prepare a demo to display implemented functionality
of the system.
Task 7.3 Present:

Deliverables:
D7.1: Demo

WP8: Detailed Design Report

Start Date: February 2025 End Date: March 2025

Leader Emir Tuğlu Members Involved All Members

Objectives: Prepare and deliver the Detailed Design Report

Tasks:
Task 8.1 Determine design goals: Usability, performance, reliability,
marketability, etc.
Task 8.2 Sketch the architecture of the system
Task 8.3 Explain subsystem services
Task 8.4 Define functional and non-functional test cases
Task 8.5 Discuss teamwork details

Deliverables:D8.1: Detailed Design Report

WP9: Design Project Final Report

Start Date: April 2025 End Date:May 2025

Leader Bora Haliloğlu Members Involved All Members

Objectives: Prepare and deliver the Design Project Final Report

Tasks:

47

Task 9.1 Write down requirements details:
Task 9.2 Sketch the final architecture
Task 9.3 Provide development and implementation details
Task 9.4 Give information about test cases and results
Task 9.5 Discuss maintenance plan
Task 9.6 Discuss other project elements: Constraints, standards, ethics and
professional responsibilities, teamwork details etc.

Deliverables:
D9.1: Design Project Final Report

WP10: App Launch

Start Date: May 2025 End Date: May 2025

Leader Burak Oruk Members Involved All Members

Objectives: Launch the app

Tasks:
Task 10.1 Test the app: Ensure each functionality is working as expected
Task 10.2 Launch the app on the App Store
Task 10.3 Launch the app on the Play Store

Deliverables:
D10.1: The app that can be downloaded by iOS and Android devices

WP11: Final Demo

Start Date: May 2025 End Date: May 2025

Leader Gökalp Gökdoğan Members Involved All Members

Objectives: Prepare and deliver the Final Demo

Tasks:
Task 11.1 Prepare Slides: Prepare slides about the project, the problem that
project solves, market and competitor analysis, business model, etc.
Task 11.2 Prepare Demo: Prepare a demo in which functionalities of the app
are displayed.
Task 11.3 Present

Deliverables:
D1.1: Final Demo

8. Glossary
● Point of Interest (POI) – A location that may be of interest to a traveler, such as

restaurants, tourist attractions, gas stations, and rest stops.

48

● Route Planning – The process of determining the best path from a starting point to a

destination, considering factors such as road conditions, distance, and travel

preferences.

● Personalized Recommendations – Suggestions for POIs that are tailored to a

user’s preferences, travel history, and behavior.

● Navigation System – A digital system that provides real-time route guidance using

GPS and mapping technologies.

● Social Media Integration – The incorporation of social networking features, such as

sharing routes, voting on places, and following other users.

● Caching – The temporary storage of frequently accessed data to reduce retrieval

time and improve performance.

● Machine Learning (ML) – A subset of artificial intelligence that enables a system to

learn from data and improve its recommendations over time.

● OAuth2 – An authorization framework that enables third-party applications to grant

access to user accounts without exposing login credentials.
● API – Application Programming Interface

● AWS – Amazon Web Services

● CRUD – Create, Read, Update, Delete (basic database operations)

● DBMS – Database Management System

● DDoS – Distributed Denial of Service (a cyber attack)

● GPS – Global Positioning System

● ML – Machine Learning

● ORM – Object-Relational Mapping (a programming technique for interacting with

databases)

● POI – Point of Interest

● RDS – Relational Database Service (AWS service for database hosting)

● SQL – Structured Query Language (used for managing databases)

● UI – User Interface

● UX – User Experience

9. References
[1] Amazon Web Services, "Amazon RDS for MySQL pricing," [Online]. Available:

https://aws.amazon.com/tr/rds/mysql/pricing/?pg=pr&loc=2. [Accessed: Nov. 19,

2024].

49

https://aws.amazon.com/tr/rds/mysql/pricing/?pg=pr&loc=2

[2] Sphinx Solution, "Cost to put an app on the App Store," [Online]. Available:

https://www.sphinx-solution.com/blog/cost-to-put-an-app-on-the-app-store/.

[Accessed: Nov. 19, 2024].

[3] IEEE, "IEEE Standard 1471: Recommended practice for architectural description

of software-intensive systems," [Online]. Available:

https://standards.ieee.org/ieee/1471/2187/. [Accessed: Nov. 19, 2024].

[4] Object Management Group, "Unified Modeling Language (UML), version 2.5.1,"

[Online]. Available: https://www.omg.org/spec/UML/2.5.1/About-UML/. [Accessed:

Nov. 19, 2024].

[5] G. Booch, J. Rumbaugh, and I. Jacobson, "The Unified Modeling Language user

guide," IEEE, 1999. [Online]. Available: https://ieeexplore.ieee.org/document/720574.

[Accessed: Nov. 19, 2024].

[6] International Organization for Standardization, "ISO 31000: Risk management,"

[Online]. Available: https://www.iso.org/iso-31000-risk-management.html/. [Accessed:

Nov. 19, 2024].

[7] New Jersey Institute of Technology, "IEEE citation style guide," [Online]. Available:

https://researchguides.njit.edu/ieee-citation/ieeereferencing/. [Accessed: Nov. 19,

2024].

[8] W. Pree, "Design patterns for object-oriented software development," IEEE, 1995.

[Online]. Available: https://ieeexplore.ieee.org/document/875998/. [Accessed: Nov.

19, 2024].

[9] UML Diagrams, "UML 2.5 diagrams overview," [Online]. Available:

https://www.uml-diagrams.org/uml-25-diagrams.html. [Accessed: Nov. 19, 2024].

[10] IEEE, "IEEE Standard 830: Recommended practice for software requirements

specifications," [Online]. Available: https://standards.ieee.org/ieee/830/1222/.

[Accessed: Nov. 19, 2024].

[11] International Organization for Standardization, "ISO 9001: Quality management

systems," [Online]. Available:

https://scc.isolutions.iso.org/obp/ui#iso:pub:PUB100464. [Accessed: Nov. 19, 2024].

[12] George Mason University, "IEEE style citation guide," [Online]. Available:

https://infoguides.gmu.edu/ieee_style#s-lg-box-29326431. [Accessed: Nov. 19,

2024].

50

https://www.sphinx-solution.com/blog/cost-to-put-an-app-on-the-app-store/
https://standards.ieee.org/ieee/1471/2187/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://ieeexplore.ieee.org/document/720574
https://www.iso.org/iso-31000-risk-management.html/
https://researchguides.njit.edu/ieee-citation/ieeereferencing/
https://ieeexplore.ieee.org/document/875998/
https://www.uml-diagrams.org/uml-25-diagrams.html
https://standards.ieee.org/ieee/830/1222/
https://scc.isolutions.iso.org/obp/ui#iso:pub:PUB100464
https://infoguides.gmu.edu/ieee_style#s-lg-box-29326431

	Detailed Design Report
	Table of Contents
	1.Introduction
	1.1.Purpose of the System
	1.2.Design Goals
	1.2.1.Usability
	1.2.2.Reliability
	1.2.3.Performance
	1.2.4.Supportability
	1.2.5.Scalability

	1.3.Definitions, Acronyms, and Abbreviations
	Definitions
	Acronyms and Abbreviations

	1.4.Overview

	2.Current Software Architecture
	2.1.Market & Competitor Analysis
	2.1.1.Roadtrippers
	2.1.2.Roadie
	2.1.3.Sygic Travel
	2.1.4.Google Maps
	2.1.5.Yandex Maps

	2.2.Comparison with Competitors

	3.Proposed Software Architecture
	3.1.Overview
	3.2.Subsystem Decomposition
	3.2.1.Presentation Layer
	3.2.2.Business Logic Layer
	3.2.3.Data Access Layer
	3.2.4.Database Layer

	3.3.Hardware/Software Mapping
	3.4.Persistent Data Management
	3.5.Access Control and Security

	4.Subsystem Services
	4.1.Presentation Layer Services
	4.2.Server Layer Services
	4.3.Data Access Layer Services
	5.Test Cases
	5.1.Test Cases for Functional Requirements
	Ensures that users can upload a profile picture, and existing functionality remains unaffected.
	Ensures that the recommendation engine fetches relevant POIs based on user preferences.
	Confirms that users can create, edit, and share posts successfully.
	Ensures that search queries return accurate and relevant results without knowing the internal implementation.
	Ensures that users cannot access or modify data they are not authorized.
	Verify that users can add/remove POIs to the route in between the starting and destination locations.
	Verify that users can change the order of POIs in their routes.
	Verify that users cannot inject and execute malicious code as a text input while creating posts.
	Verify that users can enter data only in the correct format to email, date, and phone number fields in register and edit profile pages
	Verify that API endpoints validate data before storing in the database
	Verify that users can select their current location as a starting point for a route.
	Verify that users can edit their profile.
	Recommendations are given as brief information cards at the bottom bar.
	Recommendation selection bar should have a detailed page when dragged up.

	5.2.Test Cases for Non-functional Requirements
	Verify that embeddings are stored efficiently (e.g., SSD storage is properly used and memory limits are respected).
	Measures how quickly search results are returned after a place search query.
	Measure how quickly place recommendations are generated based on personal category preferences.
	Simulates 100 concurrent users making route searches.
	Tests system stability under maximum load conditions.
	Verify that sensitive user data, such as passwords, are encrypted when stored in the database.
	Verify that caching mechanisms improve loading speed for frequently accessed routes, such as archived routes and social posts.
	Ensure that the authentication token of inactive users will be deactivated after 1 hour.
	Ensure that large number of requests coming from the same IP address will be throttled down
	Ensure that the time required to start the application from scratch is within a reasonable interval.
	Ensure that the system documentation is complete, accurate, and aligns with the implemented features.

	
	6.Consideration of Various Factors in Engineering Design
	6.1.Constraints
	6.1.1.Development Constraints
	6.1.2.Economic Constraints
	6.1.3.Technological Constraints
	6.1.4.Social Constraints
	6.1.5.Safety Constraints
	6.1.6.Sustainability Constraints

	6.2.Standards
	6.2.1.IEEE 1471
	6.2.2.UML 2.5.1
	6.2.3.IEEE 830
	6.2.4.ISO 31000
	6.2.5.IEEE Citation Style

	7.Teamwork Details
	7.1.Contributing and Functioning Effectively on the Team
	7.2.Bora Haliloğlu
	7.3.Burak Oruk
	7.4.Emir Tuğlu
	7.5.Mustafa Gökalp Gökdoğan
	7.6.Tevfik Emre Sungur

	7.7.Helping to Create a Collaborative and Inclusive Environment
	7.8.Taking a Lead Role and Sharing Leadership on the Team

	8.Glossary
	9.References

